
A light spring of spring constant $k$ is kept compressed between two blocks of masses $m$ and $M$ on a smooth horizontal surface. When released, the blocks acquire velocities in opposite directions. The spring loses contact with the blocks when it acquires natural length. If the spring was initially compressed through a distance $x$, find the final speed of the block of mass $M$:
$(A){\left[ {\dfrac{{kM}}{{M(M + m)}}} \right]^{\dfrac{1}{2}}}x$
$(B){\left[ {\dfrac{{km}}{{M(M + m)}}} \right]^{\dfrac{1}{2}}}x$
$(C){\left[ {\dfrac{M}{{M(M + m)}}} \right]^{\dfrac{1}{2}}}x$
$(D){\left[ {\dfrac{m}{{M(M + m)}}} \right]^{\dfrac{1}{2}}}x$
Answer
174.3k+ views
Hint: Use the formula of conservation of linear momentum by taking external force is zero. State an equation of conservation of energy where initial energy is due to the compression of the spring and final energy due to the motion of the blocks. Calculate the velocity of the big block from these two conservation formulas.
Formula used:
From the momentum conservation law,
$m{v_1} = M{v_2}$ where, $m$ and $M$ are the masses of block-1 and block-2 respectively.
${v_1}$ and ${v_2}$ are the velocities of block-1 and block-2 respectively after losing the contact of the spring.
From the energy conservation law,
$\dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}M{v_2}^2$
$k$ Is the spring constant and $x$ is the expansion due to the compression of the spring.
Complete step by step answer:
The two blocks of masses $m$ and $M$ are attached through a light spring of spring constant $k$ and expanded by the length $x$.
After losing the contact of the spring, block-1 is moving with a velocity ${v_1}$ and block-2 is moving with a velocity ${v_2}$.
The diagram is shown below,

According to the momentum for the conservation and we can write it as
$m{v_1} = M{v_2}$ [ $m$ and $M$ are the masses of block-1 and block-2 respectively.]
$ \Rightarrow {v_1} = \dfrac{{M{v_2}}}{m}...................(1)$
The initial energy is due the compression of the spring, hence ${E_1} = \dfrac{1}{2}k{x^2}$
$k$ is the spring constant and $x$ is the expansion due to the compression of the spring.
And, the final energy will be due to the motion of the blocks, hence ${E_2} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}M{v_2}^2$
From the energy conservation law,
${E_1} = {E_2}$
$ \Rightarrow \dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}M{v_2}^2.................(2)$
By putting the value of ${v_1}$ from eq $(1)$ in the eq. $(2)$ we get,
$ \Rightarrow \dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{\left( {\dfrac{{M{v_2}}}{m}} \right)^2} + \dfrac{1}{2}M{v_2}^2$
$ \Rightarrow k{x^2} = \dfrac{{{M^2}{v_2}^2}}{m} + M{v_2}^2$
$ \Rightarrow M{v_2}^2\left( {\dfrac{M}{m} + 1} \right) = k{x^2}$
$ \Rightarrow M{v_2}^2\left( {\dfrac{{M + m}}{m}} \right) = k{x^2}$
$ \Rightarrow {v_2}^2M(M + m) = km{x^2}$
$ \Rightarrow {v_2}^2 = \dfrac{{km}}{{M(M + m)}}{x^2}$
$ \Rightarrow {v_2} = {\left[ {\dfrac{{km}}{{M(M + m)}}} \right]^{\dfrac{1}{2}}}x$
So, the velocity of the block-2 will be, ${v_2} = {\left[ {\dfrac{{km}}{{M(M + m)}}} \right]^{\dfrac{1}{2}}}x$
Hence the correct answer is in option $(A)$.
Note: We know that the force is the change of the linear momentum of the objects in a system. Since, there is o external force acting horizontally on the system consisting of two blocks and a spring, the linear momentum will be zero. Hence the equation be like, $m{v_1} - M{v_2} = 0$. This concept leads to the concept of conservation of linear momentum.
Formula used:
From the momentum conservation law,
$m{v_1} = M{v_2}$ where, $m$ and $M$ are the masses of block-1 and block-2 respectively.
${v_1}$ and ${v_2}$ are the velocities of block-1 and block-2 respectively after losing the contact of the spring.
From the energy conservation law,
$\dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}M{v_2}^2$
$k$ Is the spring constant and $x$ is the expansion due to the compression of the spring.
Complete step by step answer:
The two blocks of masses $m$ and $M$ are attached through a light spring of spring constant $k$ and expanded by the length $x$.
After losing the contact of the spring, block-1 is moving with a velocity ${v_1}$ and block-2 is moving with a velocity ${v_2}$.
The diagram is shown below,

According to the momentum for the conservation and we can write it as
$m{v_1} = M{v_2}$ [ $m$ and $M$ are the masses of block-1 and block-2 respectively.]
$ \Rightarrow {v_1} = \dfrac{{M{v_2}}}{m}...................(1)$
The initial energy is due the compression of the spring, hence ${E_1} = \dfrac{1}{2}k{x^2}$
$k$ is the spring constant and $x$ is the expansion due to the compression of the spring.
And, the final energy will be due to the motion of the blocks, hence ${E_2} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}M{v_2}^2$
From the energy conservation law,
${E_1} = {E_2}$
$ \Rightarrow \dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}M{v_2}^2.................(2)$
By putting the value of ${v_1}$ from eq $(1)$ in the eq. $(2)$ we get,
$ \Rightarrow \dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{\left( {\dfrac{{M{v_2}}}{m}} \right)^2} + \dfrac{1}{2}M{v_2}^2$
$ \Rightarrow k{x^2} = \dfrac{{{M^2}{v_2}^2}}{m} + M{v_2}^2$
$ \Rightarrow M{v_2}^2\left( {\dfrac{M}{m} + 1} \right) = k{x^2}$
$ \Rightarrow M{v_2}^2\left( {\dfrac{{M + m}}{m}} \right) = k{x^2}$
$ \Rightarrow {v_2}^2M(M + m) = km{x^2}$
$ \Rightarrow {v_2}^2 = \dfrac{{km}}{{M(M + m)}}{x^2}$
$ \Rightarrow {v_2} = {\left[ {\dfrac{{km}}{{M(M + m)}}} \right]^{\dfrac{1}{2}}}x$
So, the velocity of the block-2 will be, ${v_2} = {\left[ {\dfrac{{km}}{{M(M + m)}}} \right]^{\dfrac{1}{2}}}x$
Hence the correct answer is in option $(A)$.
Note: We know that the force is the change of the linear momentum of the objects in a system. Since, there is o external force acting horizontally on the system consisting of two blocks and a spring, the linear momentum will be zero. Hence the equation be like, $m{v_1} - M{v_2} = 0$. This concept leads to the concept of conservation of linear momentum.
Recently Updated Pages
JEE Main Hydrocarbons Mock Test 2025-26: Free Practice Online

JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Mock Test: Organic Compounds Containing Halogens

JEE Main 2025-26 Biomolecules Mock Test – Free Practice Online

JEE Main 2025 Organic Compounds Containing Oxygen Mock Test

JEE Main Mock Test 2025-26: Principles & Best Practices

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
