
A spring having a spring constant K is loaded with a mass m. The spring is cut into two equal parts and one of these is loaded again with the same mass. The new spring constant is
A. \[\dfrac{k}{2}\]
B. k
C. 2k
D. \[{k^2}\]
Answer
174.3k+ views
Hint: Spring constant of a spring is inversely proportional to the length of the spring and will be the same for both halves of the spring.
Formula used:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
Here k is the spring constant.
Complete step by step solution:
A spring of constant k is loaded with mass, we have to find the spring constant when the spring is cut into two equal halves and one of them is loaded with the same mass again.
As spring constant of a spring is inversely proportional to the length of the spring.
Let the length of the spring be l then, the relation between constant k and length l can be mathematically expressed as:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
When the spring is cut into two equal halves then the length of each halves will be \[\dfrac{l}{2}\] and let the spring constant of one half be k’.
From the proportionality relation when length becomes half spring constant will be doubled i.e. k’ = 2k.
Therefore, option C is the correct option.
Note: Spring constant for both halves will be equal i.e. 2k and it does not depend on the mass of the object suspended to the spring. It can be mathematically proved by equation\[F = - kx = - m{\omega ^2}x\], as on substituting \[{\omega ^2} = \dfrac{k}{m}\]in \[k = m{\omega ^2}\]mass m of object will be canceled out.
Formula used:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
Here k is the spring constant.
Complete step by step solution:
A spring of constant k is loaded with mass, we have to find the spring constant when the spring is cut into two equal halves and one of them is loaded with the same mass again.
As spring constant of a spring is inversely proportional to the length of the spring.
Let the length of the spring be l then, the relation between constant k and length l can be mathematically expressed as:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
When the spring is cut into two equal halves then the length of each halves will be \[\dfrac{l}{2}\] and let the spring constant of one half be k’.
From the proportionality relation when length becomes half spring constant will be doubled i.e. k’ = 2k.
Therefore, option C is the correct option.
Note: Spring constant for both halves will be equal i.e. 2k and it does not depend on the mass of the object suspended to the spring. It can be mathematically proved by equation\[F = - kx = - m{\omega ^2}x\], as on substituting \[{\omega ^2} = \dfrac{k}{m}\]in \[k = m{\omega ^2}\]mass m of object will be canceled out.
Recently Updated Pages
JEE Main Physics Mock Test 2025

JEE Main Maths Mock Test 2025: FREE Online Mock Test Series

JEE Main Chemistry Mock Test 2025

JEE Main Hydrocarbons Mock Test 2025-26: Free Practice Online

JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Mock Test: Organic Compounds Containing Halogens

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
