
What is the equation that represents Gauss theorem for gravitational field?
A. $\oint {\overrightarrow g \cdot \overrightarrow {ds} } = \dfrac{m}{G}$
B. $ - \oint {\overrightarrow g \cdot \overrightarrow {ds} } = 4\pi mG$
C. $\oint {\overrightarrow g \cdot \overrightarrow {ds} } = \dfrac{m}{{4\pi G}}$
D. $ - \oint {\overrightarrow g \cdot \overrightarrow {ds} } = \dfrac{m}{G}$
Answer
174.6k+ views
Hint: According to gauss law for electric fields, the net electric flux through any closed surface is equal to $\dfrac{1}{{{\varepsilon _0}}}$ times the total electric charge $q$ enclosed, by the surface.
That is $\oint {E.ds} = \dfrac{q}{{{\varepsilon _0}}}$
Where the electric field, $E$ is given by the equation
$E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}$
Gravitational field is given by the equation
$g = G\dfrac{m}{{{r^2}}}$
By comparing the equation for electric field and gravitational field we can arrive at the gauss law for gravitational field.
Complete step by step answer:
According to gauss law for electric fields, the net electric flux through any closed surface is equal to $\dfrac{1}{{{\varepsilon _0}}}$ times the total electric charge $q$ enclosed, by the surface.
That is $\oint {E.ds} = \dfrac{q}{{{\varepsilon _0}}}$ (1)
Where the electric field is given by the equation
$E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}$ (2)
Similarly, we can write the gauss law for gravitational field.
We know gravitational field is given by the equation
$g = G\dfrac{m}{{{r^2}}}$ (3)
Now compare equation (3) and (2)
We can see that $q$in electric field is analogous to$m$ in gravitational field.
Also, the constants $\dfrac{1}{{4\pi {\varepsilon _0}}}$ in electric field is analogous to the gravitational constant $G$in gravitational field. Now we can equate these constants.
$
\dfrac{1}{{4\pi {\varepsilon _0}}} = G \\
\dfrac{1}{{{\varepsilon _0}}} = 4\pi G \\
$
So, let us replace the gravitational analogues in the equation (1)
$
\oint {E.ds} = \dfrac{1}{{{\varepsilon _0}}} \times q \\
\oint {g.ds} = 4\pi G \times m \\
$
The gravitational force is always an attractive force. Hence, we have to consider a negative sign in the equation of gauss law for the gravitational field.
Thus, our final answer is option B, $ - \oint {\overrightarrow g \cdot \overrightarrow {ds} } = 4\pi mG$
Note: It is important to note that Gravitational force is always attractive in nature,but $4\pi mG$ is always a positive quantity and hence we include a negative sign in the left hand side of the equation to maintain the sign convention(negative field for attraction).
That is $\oint {E.ds} = \dfrac{q}{{{\varepsilon _0}}}$
Where the electric field, $E$ is given by the equation
$E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}$
Gravitational field is given by the equation
$g = G\dfrac{m}{{{r^2}}}$
By comparing the equation for electric field and gravitational field we can arrive at the gauss law for gravitational field.
Complete step by step answer:
According to gauss law for electric fields, the net electric flux through any closed surface is equal to $\dfrac{1}{{{\varepsilon _0}}}$ times the total electric charge $q$ enclosed, by the surface.
That is $\oint {E.ds} = \dfrac{q}{{{\varepsilon _0}}}$ (1)
Where the electric field is given by the equation
$E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}$ (2)
Similarly, we can write the gauss law for gravitational field.
We know gravitational field is given by the equation
$g = G\dfrac{m}{{{r^2}}}$ (3)
Now compare equation (3) and (2)
We can see that $q$in electric field is analogous to$m$ in gravitational field.
Also, the constants $\dfrac{1}{{4\pi {\varepsilon _0}}}$ in electric field is analogous to the gravitational constant $G$in gravitational field. Now we can equate these constants.
$
\dfrac{1}{{4\pi {\varepsilon _0}}} = G \\
\dfrac{1}{{{\varepsilon _0}}} = 4\pi G \\
$
So, let us replace the gravitational analogues in the equation (1)
$
\oint {E.ds} = \dfrac{1}{{{\varepsilon _0}}} \times q \\
\oint {g.ds} = 4\pi G \times m \\
$
The gravitational force is always an attractive force. Hence, we have to consider a negative sign in the equation of gauss law for the gravitational field.
Thus, our final answer is option B, $ - \oint {\overrightarrow g \cdot \overrightarrow {ds} } = 4\pi mG$
Note: It is important to note that Gravitational force is always attractive in nature,but $4\pi mG$ is always a positive quantity and hence we include a negative sign in the left hand side of the equation to maintain the sign convention(negative field for attraction).
Recently Updated Pages
JEE Main Physics Mock Test 2025

JEE Main Maths Mock Test 2025: FREE Online Mock Test Series

JEE Main Chemistry Mock Test 2025

JEE Main Hydrocarbons Mock Test 2025-26: Free Practice Online

JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Mock Test: Organic Compounds Containing Halogens

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
