
Find the sum of an infinite series \[1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty \].
A. 3
B. 6
C. 9
D. 12
Answer
174.6k+ views
Hint: In the given question, the infinite series is given. We will divide the series by \[2\], then subtract the new series from the original series. The terms of the new series are in geometric progression. So, by using the formula of the sum of infinite terms in geometric progression, we will find the value of the series.
Formula used:
The sum of infinite terms in GP is: \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] , where \[a\] is the first term and \[r\] is the common ratio, where \[r \ne 1\].
Complete step by step solution:
The given series is,
\[S = 1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty \] ….equation(1)
Divide the above series by \[2\].
\[\dfrac{S}{2} = \dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty \] .......equation (2)
Subtract equation (2) from equation (1).
\[S - \dfrac{S}{2} = \left( {1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty } \right) - \left( {\dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty } \right)\]
Simplify the above equation.
Subtract the terms of the second bracket from the terms of the first brackets with the same denominator.
\[\dfrac{S}{2} = 1 + \dfrac{{3 - 1}}{2} + \dfrac{{5 - 3}}{{{2^2}}} + \dfrac{{7 - 5}}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \dfrac{2}{2} + \dfrac{2}{{{2^2}}} + \dfrac{2}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + .....\infty } \right]\]
The terms in the square bracket are in geometric progression where the first term is \[a = 1\] and the common ratio is \[r = \dfrac{1}{2}\].
Apply the formula of the sum of infinite terms in geometric progression \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] in the square bracket.
\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\left( {1 - \dfrac{1}{2}} \right)}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\dfrac{1}{2}}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{2}{1}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + 2\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 3\]
\[ \Rightarrow \]\[S = 2 \times 3\]
\[ \Rightarrow \]\[S = 6\]
Hence, the correct option is option B.
Note: Students are often confused with the value of \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}}\] that whether \[\dfrac{{ac}}{b}\] or \[\dfrac{a}{{bc}}\] . But the correct formula is \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}} = \dfrac{{ac}}{b}\]. Because the denominator of the denominator will be multiplied to the numerator.
Formula used:
The sum of infinite terms in GP is: \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] , where \[a\] is the first term and \[r\] is the common ratio, where \[r \ne 1\].
Complete step by step solution:
The given series is,
\[S = 1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty \] ….equation(1)
Divide the above series by \[2\].
\[\dfrac{S}{2} = \dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty \] .......equation (2)
Subtract equation (2) from equation (1).
\[S - \dfrac{S}{2} = \left( {1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty } \right) - \left( {\dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty } \right)\]
Simplify the above equation.
Subtract the terms of the second bracket from the terms of the first brackets with the same denominator.
\[\dfrac{S}{2} = 1 + \dfrac{{3 - 1}}{2} + \dfrac{{5 - 3}}{{{2^2}}} + \dfrac{{7 - 5}}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \dfrac{2}{2} + \dfrac{2}{{{2^2}}} + \dfrac{2}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + .....\infty } \right]\]
The terms in the square bracket are in geometric progression where the first term is \[a = 1\] and the common ratio is \[r = \dfrac{1}{2}\].
Apply the formula of the sum of infinite terms in geometric progression \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] in the square bracket.
\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\left( {1 - \dfrac{1}{2}} \right)}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\dfrac{1}{2}}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{2}{1}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + 2\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 3\]
\[ \Rightarrow \]\[S = 2 \times 3\]
\[ \Rightarrow \]\[S = 6\]
Hence, the correct option is option B.
Note: Students are often confused with the value of \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}}\] that whether \[\dfrac{{ac}}{b}\] or \[\dfrac{a}{{bc}}\] . But the correct formula is \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}} = \dfrac{{ac}}{b}\]. Because the denominator of the denominator will be multiplied to the numerator.
Recently Updated Pages
JEE Main Physics Mock Test 2025

JEE Main Maths Mock Test 2025: FREE Online Mock Test Series

JEE Main Chemistry Mock Test 2025

JEE Main Hydrocarbons Mock Test 2025-26: Free Practice Online

JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Mock Test: Organic Compounds Containing Halogens

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 4 Complex Numbers And Quadratic Equations - 2025-26

NCERT Solutions For Class 11 Maths Chapter 6 Permutations And Combinations - 2025-26

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series - 2025-26

What is Hybridisation in Chemistry?

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
