
Magnetic intensity for an axial point due to a short bar magnet of magnetic moment M is given by
( a ) $\dfrac{{{u}_{0}}}{4\pi }\times \dfrac{M}{{{d}^{3}}}$
( b ) $\dfrac{{{u}_{0}}}{4\pi }\times \dfrac{M}{{{d}^{2}}}$
( c ) $\dfrac{{{u}_{0}}}{2\pi }\times \dfrac{M}{{{d}^{2}}}$
( d ) $\dfrac{{{u}_{0}}}{2\pi }\times \dfrac{M}{{{d}^{3}}}$
Answer
174.3k+ views
Hint:
In this question, we have to find out the magnetic intensity for an axial point. First we suppose a magnet and it is at the same axis of the point. Then we will find the magnetic intensity for a short bar magnet by neglecting the length of the magnet.
Complete step by step solution:
We have to find out the magnetic field intensity for an axial point due to a short bar magnet.
We know the magnetic lines flow from the north pole towards the south pole forming circular loops. This induces a magnetic moment and the strength or the intensity of this magnetic field must be calculated.
Let us consider the magnetic field due to some magnet. As we can see that the magnet is placed axially, that is in the same axis of the point.
Then the equation for the magnetic field intensity at a point on the axis of the bar magnet is as follow:-
${{\vec{B}}_{axial}}=\dfrac{{{u}_{0}}}{4\pi }\dfrac{2Md}{{{\left( {{d}^{2}}-{{l}^{2}} \right)}^{2}}}$
Where r is the distance between the point and the centre of the magnet
L is the length of the magnet.
As the magnet used in this question is of short bar magnet then the length of the bar magnet is neglected as it is very small in comparison to the d value.
Then the equation be
${{\vec{B}}_{axial}}=\dfrac{{{u}_{0}}}{4\pi }\dfrac{2Md}{{{\left( {{d}^{2}} \right)}^{2}}}$
${{\vec{B}}_{axial}}=\dfrac{{{u}_{0}}}{2\pi }\dfrac{M}{{{d}^{3}}}$
Therefore, the correct option is D.
Note:
In this question, we also remember that at an axial point, the magnetic field has the same direction as that of the magnetic dipole moment vector due to a bar magnet. Since, the north pole is nearer to the point, the magnetic field at that point is higher than the south pole.
In this question, we have to find out the magnetic intensity for an axial point. First we suppose a magnet and it is at the same axis of the point. Then we will find the magnetic intensity for a short bar magnet by neglecting the length of the magnet.
Complete step by step solution:
We have to find out the magnetic field intensity for an axial point due to a short bar magnet.
We know the magnetic lines flow from the north pole towards the south pole forming circular loops. This induces a magnetic moment and the strength or the intensity of this magnetic field must be calculated.
Let us consider the magnetic field due to some magnet. As we can see that the magnet is placed axially, that is in the same axis of the point.
Then the equation for the magnetic field intensity at a point on the axis of the bar magnet is as follow:-
${{\vec{B}}_{axial}}=\dfrac{{{u}_{0}}}{4\pi }\dfrac{2Md}{{{\left( {{d}^{2}}-{{l}^{2}} \right)}^{2}}}$
Where r is the distance between the point and the centre of the magnet
L is the length of the magnet.
As the magnet used in this question is of short bar magnet then the length of the bar magnet is neglected as it is very small in comparison to the d value.
Then the equation be
${{\vec{B}}_{axial}}=\dfrac{{{u}_{0}}}{4\pi }\dfrac{2Md}{{{\left( {{d}^{2}} \right)}^{2}}}$
${{\vec{B}}_{axial}}=\dfrac{{{u}_{0}}}{2\pi }\dfrac{M}{{{d}^{3}}}$
Therefore, the correct option is D.
Note:
In this question, we also remember that at an axial point, the magnetic field has the same direction as that of the magnetic dipole moment vector due to a bar magnet. Since, the north pole is nearer to the point, the magnetic field at that point is higher than the south pole.
Recently Updated Pages
JEE Main 2025-26 Atoms and Nuclei Mock Test: Free Practice Online

JEE Main 2025-26: Dual Nature of Matter and Radiation Mock Test

JEE Main 2025-26 Electronic Devices Mock Test – Free Practice

JEE Main Mock Test 2025-26: Experimental Skills Chapter Online Practice

JEE Main 2025-26 Current Electricity Mock Test: Free Practice Online

JEE Main 2025-26 Rotational Motion Mock Test – Free Practice Online

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

What is Hybridisation in Chemistry?

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions
