
Solve $\int_{-2}^{2}|1-x^{2}\lvert.\text{d}x$ [IIT 1989; BIT Mesra 1996; Kurukshetra CEE 1998; MP PET 2002; Kerala (Engg.) 2002]
(A) 2
(B) 4
(C) 6
(D) 8
Answer
176.4k+ views
Hint: Integration means adding smaller functions to create a larger one. It is the inverse of differentiation, so it is also known as anti differentiation. Integrals with no integration limit are known as indefinite integrals. Integrals with an upper and lower limit are said to be definite integrals.
Complete step by step solution:The given integral is I = $\int_{-2}^{2}|1-x^{2}\lvert.\text{d}x$
Here the given function is f(x) = $\|1-x^{2}\lvert$ and the total range over which the integral is to be done is -2 to 2, with a lower limit of -2 and an upper limit of 2. We observe that the value of this function is negative in the range of -2 to -1, positive in the range of -1 to 1, and again negative in the range of 1 to 2.
So, the above integral can be written as
I = $-\int_{-2}^{-1}(1-x^{2}).\text{d}x+\int_{-1}^{1}(1-x^{2}).\text{d}x-\int_{1}^{2}(1-x^{2}).\text{d}x$
I = $-\left[x-\dfrac{x^3}{3}\right]_{-2}^{-1}+\left[x-\dfrac{x^3}{3}\right]_{-1}^{1}-\left[x-\dfrac{x^3}{3}\right]_{1}^{2}$
I = $-((-1)-\dfrac{-1^3}{3}-((-2)-\dfrac{-2^3}{3}))+((1)-\dfrac{1^3}{3}-((-1)-\dfrac{-1^3}{3})+((2)-\dfrac{2^3}{3}-((1)-\dfrac{1^3}{3}))$
I = $-(-1+\dfrac{1}{3}+2-\dfrac{8}{3})+(1-\dfrac{1}{3}+1-\dfrac{1}{3})-(2-\dfrac{8}{3}-1+\dfrac{1}{3})$
I = $\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{4}{3}$
I = 4
Hence, the integration of $\|1-x^{2}\lvert$over the range of -2 to 2 is 4.
Option ‘B’ is correct
Note: The integration should be done carefully. Integration can be applied in daily life. It is used in chemistry to study radioactive decay reactions. It can be used to calculate the velocity and trajectory of the object. It is also used to calculate the centre of mass, centre of gravity, mass, and momentum of the satellites.
Complete step by step solution:The given integral is I = $\int_{-2}^{2}|1-x^{2}\lvert.\text{d}x$
Here the given function is f(x) = $\|1-x^{2}\lvert$ and the total range over which the integral is to be done is -2 to 2, with a lower limit of -2 and an upper limit of 2. We observe that the value of this function is negative in the range of -2 to -1, positive in the range of -1 to 1, and again negative in the range of 1 to 2.
So, the above integral can be written as
I = $-\int_{-2}^{-1}(1-x^{2}).\text{d}x+\int_{-1}^{1}(1-x^{2}).\text{d}x-\int_{1}^{2}(1-x^{2}).\text{d}x$
I = $-\left[x-\dfrac{x^3}{3}\right]_{-2}^{-1}+\left[x-\dfrac{x^3}{3}\right]_{-1}^{1}-\left[x-\dfrac{x^3}{3}\right]_{1}^{2}$
I = $-((-1)-\dfrac{-1^3}{3}-((-2)-\dfrac{-2^3}{3}))+((1)-\dfrac{1^3}{3}-((-1)-\dfrac{-1^3}{3})+((2)-\dfrac{2^3}{3}-((1)-\dfrac{1^3}{3}))$
I = $-(-1+\dfrac{1}{3}+2-\dfrac{8}{3})+(1-\dfrac{1}{3}+1-\dfrac{1}{3})-(2-\dfrac{8}{3}-1+\dfrac{1}{3})$
I = $\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{4}{3}$
I = 4
Hence, the integration of $\|1-x^{2}\lvert$over the range of -2 to 2 is 4.
Option ‘B’ is correct
Note: The integration should be done carefully. Integration can be applied in daily life. It is used in chemistry to study radioactive decay reactions. It can be used to calculate the velocity and trajectory of the object. It is also used to calculate the centre of mass, centre of gravity, mass, and momentum of the satellites.
Recently Updated Pages
JEE Main Physics Mock Test 2025

JEE Main Maths Mock Test 2025: FREE Online Mock Test Series

JEE Main Chemistry Mock Test 2025

JEE Main Hydrocarbons Mock Test 2025-26: Free Practice Online

JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Mock Test: Organic Compounds Containing Halogens

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

What is Hybridisation in Chemistry?

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Collision - Important Concepts and Tips for JEE

Current Loop as Magnetic Dipole and Its Derivation for JEE
