NCERT Solutions For Class 11 Maths Chapter 15 Statistics in Hindi - 2025-26
In NCERT Solutions for Class 11 Maths In Hindi Chapter 15 Statistics, you’ll explore how to collect, organize, and make sense of data using simple math tools. This chapter helps you understand important concepts like mean, median, mode, and how much values can vary. If you’ve ever been confused by data tables or wondered how to solve statistics sums easily, you’re in the right place!
Here, Vedantu gives you step-by-step solutions in easy Hindi, perfect for revising and clearing all your doubts. Plus, you can find free, downloadable PDFs for practice whenever you want. If you’re looking to see the full syllabus, check the latest CBSE Maths Class 11 syllabus for more details.
Use these NCERT Solutions to build your confidence and score better marks in exams. Understanding Statistics makes math problems in daily life simpler and even more interesting.
NCERT Solutions for Class 11 Maths Chapter 15 Statistics in Hindi
प्रश्नावली 15.1
प्रश्न 1 एवं 2 मे दिए गए आंकड़ों के लिए मध्य के सापेक्ष माध्य विचलन ज्ञात कीजिए।
1. ${\mathbf{\text{4, 7, 8, 9, 10, 12, 13, 17}}}$
उत्तर:
डेटा के माध्य है $\bar{x}\dfrac{{{\text{4 + 7 + 8 + 9 + 10 + 12 + 13 + 17}}}}{{\text{8}}}{\text{ = }}\dfrac{{{\text{80}}}}{{\text{8}}}{\text{ = 10}}$
माध्य से संबंधित अवलोकनों का विचलन ${{\bar{ x} , }}{{\text{x}}_{\text{i}}}{{ - \bar {x} = - 6, - 3, - 2, - 1, 0, 2, 3, 7}}$
विचलन के पूर्ण मान है $\left| {{{\text{x}}_{\text{i}}}{{ - \bar{ x}}}} \right|{\text{ = 6, 3, 2, 1, 0, 2, 3, 7}}$
औसत माध्य के बारे मे आवश्यक विचलन
${{MD(\bar{ x}) = }}\dfrac{{(\sum\limits_{{\text{i = 1}}}^{\text{8}} {\left| {{{\text{x}}_{\text{i}}}{{ - \bar{ x}}}} \right|} )}}{8}\; = \;\dfrac{{{\text{6 + 3 + 2 + 1 + 0 + 2 + 3 + 7}}}}{{\text{8}}}\; = \;\dfrac{{{\text{24}}}}{{\text{8}}}{\text{ = 3}}$
2. ${\mathbf{\text{38, 70, 48, 40, 42, 55, 63, 46, 54, 44}}}$
उत्तर:
माध्य ${{\bar{ x} = }}\dfrac{{{\text{38 + 70 + 48 + 40 + 42 + 55 + 63 + 46 + 54 + 44}}}}{{{\text{10}}}}{\text{ = }}\dfrac{{{\text{500}}}}{{{\text{10}}}}{\text{ = 50}}$
माध्य से संबंधित अवलोकनों का विचलन ${{\bar{ x }, }}{{\text{x}}_{\text{i}}}{{ - \bar {x} = - 12, 20, - 2, - 10, - 8, 5, 13, - 4, 4, - 6}}$
विचलन के पूर्ण मान है $\left| {{{\text{x}}_{\text{i}}}{{ - \bar{ x}}}} \right|{\text{ = 12, 20, 2, 10, 8, 5, 13, 4, 4, 6}}$
औसत माध्य के बारे मे आवश्यक विचलन
${{MD(\bar {x}) = }}\dfrac{{(\sum\limits_{{\text{i = 1}}}^{10} {\left| {{{\text{x}}_{\text{i}}}{{ - \bar{ x}}}} \right|} )}}{{10}}\; = \;\dfrac{{{\text{12 + 20 + 2 + 10 + 8 + 5 + 13 + 4 + 4 + 6}}}}{{10}}\; = \;\dfrac{{84}}{{10}}{\text{ = 8}}{\text{.4}}$
प्रश्न 3 एवं 4 के आंकड़ों के लिए माध्ययिका के सापेक्ष माध्य विचलन ज्ञात कीजिए।
3. ${\mathbf{\text{13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17}}}$
उत्तर:
यहा टिप्पणियों की संख्या $12$ है जो कि सम है
आरोही क्रम मे व्यवस्था कर के हम प्राप्त करते है
${\text{10, 11, 11, 12, 13, 13, 14, 16, 16, 17, 17, 18}}$
$\begin{align} {\text{M = }}\dfrac{{{{\left( {\dfrac{{{\text{12}}}}{{\text{2}}}} \right)}^{{\text{th}}}}{\text{obsservation + }}{{\left( {\dfrac{{{\text{12}}}}{{\text{2}}}{\text{ + 1}}} \right)}^{^{{\text{th}}}}}{\text{observation }}}}{{\text{2}}} \hfill \\ {\text{ = }}\dfrac{{\left( {{{\text{6}}^{{\text{th }}}}{\text{ observation + }}{{\text{7}}^{{\text{th }}}}{\text{ observation }}} \right)}}{{\text{2}}} \hfill \\ {\text{ = }}\dfrac{{{\text{13 + 14}}}}{{\text{2}}}{\text{ = }}\dfrac{{{\text{27}}}}{{\text{2}}}{\text{ = 13}}{\text{.5}} \hfill \\ \end{align} $
माध्य से संबंधित अवलोकनों का विचलन ${{\text{x}}_{\text{i}}}{\text{ - M, - 3}}{\text{.5, - 2}}{\text{.5, - 2}}{\text{.5, - 1}}{\text{.5, - 0}}{\text{.5, - 0}}{\text{.5, 0}}{\text{.5, 2}}{\text{.5, 2}}{\text{.5, 3}}{\text{.5, 3}}{\text{.5, 4}}{\text{.5}}$
विचलन के पूर्ण मान है $\left| {{{\text{x}}_{\text{i}}}{\text{ - M}}} \right|{\text{ = 3}}{\text{.5, 2}}{\text{.5, 2}}{\text{.5, 1}}{\text{.5, 0}}{\text{.5, 0}}{\text{.5, 0}}{\text{.5, 2}}{\text{.5, 2}}{\text{.5, 3}}{\text{.5, 3}}{\text{.5, 4}}{\text{.5}}$
माध्य के बारे मे आवश्यक माध्य विचलन ${\text{M}}{\text{.D}}{\text{. = }}\left( {\dfrac{{\sum\limits_{{\text{i = 1}}}^{{\text{10}}} {\text{|}} {{xi - \bar {x}|}}}}{{{\text{12}}}}} \right){\text{ = }}\dfrac{{{\text{3}}{\text{.5 + 2}}{\text{.5 + 2}}{\text{.5 + 1}}{\text{.5 + 0}}{\text{.5 + 0}}{\text{.5 + 0}}{\text{.5 + 2}}{\text{.5 + 2}}{\text{.5 + 3}}{\text{.5 + 3}}{\text{.5 + 4}}{\text{.5}}}}{{{\text{12}}}}{\text{ = }}\dfrac{{{\text{28}}}}{{{\text{12}}}}{\text{ = 2}}{\text{.33}}$
4. ${\mathbf{\text{36, 72, 46, 42, 60, 45, 53, 46, 51, 49}}}$
उत्तर:
यहा टिप्पणियों की संख्या ${\text{10}}$ है जो की सम है
आरोही क्रम मे व्यवस्था करते हुए हम प्राप्त करते है
${\text{36, 42, 45, 46, 46, 49, 51, 53, 60, 72}}$
$\begin{align} {\text{M = }}\dfrac{{{{\left( {\dfrac{{{\text{10}}}}{{\text{2}}}} \right)}^{{\text{th}}}}{\text{observation + }}{{\left( {\dfrac{{{\text{10}}}}{{\text{2}}}{\text{ + 1}}} \right)}^{{\text{th}}}}{\text{observation}}}}{{\text{2}}}{\text{ observation}} \hfill \\ {\text{ = }}\dfrac{{{{\text{5}}^{{\text{th }}}}{\text{ observation + }}{{\text{6}}^{{\text{th }}}}{\text{ observation }}}}{{\text{2}}} \hfill \\ {\text{ = }}\dfrac{{{\text{46 + 49}}}}{{\text{2}}}{\text{ = }}\dfrac{{{\text{95}}}}{{\text{2}}}{\text{ = 47}}{\text{.5}} \hfill \\ \end{align} $
माधायिका से संबंधित प्रेक्षणों का विचलन अर्थात ${{\text{x}}_{\text{i}}}{\text{ - M = - 11}}{\text{.5, - 5}}{\text{.5, - 2}}{\text{.5, - 1}}{\text{.5, - 1}}{\text{.5, 3}}{\text{.5, 5}}{\text{.5, 12}}{\text{.5, 24}}{\text{.5}}$
विचलन के पूर्ण मान है $\left| {{{\text{x}}_{\text{i}}}{\text{ - M}}} \right|{\text{ : 11}}{\text{.5, 5}}{\text{.5, 2}}{\text{.5, 1}}{\text{.5, 1}}{\text{.5, 1}}{\text{.5, 1}}{\text{.5, 3}}{\text{.5, 5}}{\text{.5, 12}}{\text{.5, 24}}{\text{.5}}$
इस प्रकार माधायिका के बारे मे आवश्यक माध्य ${\text{M}}{\text{.D}}{\text{. = }}\left( {\dfrac{{\sum\limits_{{\text{i = 1}}}^{{\text{10}}} {\text{|}} {\text{xi - M|}}}}{{{\text{10}}}}} \right)$
${\text{ = }}\dfrac{{{\text{11}}{\text{.5 + 5}}{\text{.5 + 2}}{\text{.5 + 1}}{\text{.5 + 1}}{\text{.5 + 1}}{\text{.5 + 1}}{\text{.5 + 3}}{\text{.5 + 5}}{\text{.5 + 12}}{\text{.5 + 24}}{\text{.5}}}}{{{\text{10}}}}{\text{ = }}\dfrac{{{\text{70}}}}{{{\text{10}}}}{\text{ = 7}}$
प्रश्न 5 एवं 6 के आंकड़ों के लिए माध्य के सापेक्ष माध्य विचलन ज्ञात कीजिए:
5.
$\mathbf{{{\text{x}}_{\text{i}}}}$ | 5 | 10 | 15 | 20 | 25 |
$\mathbf{{{\text{f}}_{\text{i}}}}$ | 7 | 4 | 6 | 3 | 5 |
उत्तर:
$\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}}$ | $\mathbf{{\text{x}}{{\text{f}}_{\text{i}}}}$ | $\mathbf{{\text{|}}{{\text{x}}_{\text{i}}}{{ - \tilde x|}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}{\text{|}}{{\text{x}}_{\text{i}}}{{ - \tilde x|}}}$ |
5 | 7 | 35 | 9 | 63 |
10 | 4 | 40 | 4 | 16 |
15 | 63 | 90 | 1 | 6 |
20 | 3 | 60 | 6 | 18 |
25 | 5 | 125 | 11 | 55 |
25 | 350 | 158 |
$\begin{align} {\text{N = }}\sum\limits_{{\text{i = 1}}}^{\text{5}} {{{\text{f}}_{\text{i}}}} {\text{ = 25 , }}\sum\limits_{{\text{i = 1}}}^{\text{5}} {{{\text{f}}_{\text{i}}}} {{\text{x}}_{\text{i}}}{\text{ = 350}} \hfill \\ {{\bar{ x} = }}\sum\limits_{{\text{i = 1}}}^{\text{5}} {{{\text{f}}_{\text{i}}}} {{\text{x}}_{\text{i}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{25}}}} \times {\text{350 = 14}} \hfill \\ {{M}}{{.D \times (\bar {x}) = }}\dfrac{{\text{1}}}{{\text{N}}}\sum\limits_{{\text{i = 1}}}^{\text{5}} {{{\text{f}}_{\text{i}}}} \left| {{{\text{x}}_{\text{i}}}{{ - \bar {x}}}} \right|{\text{ = }}\dfrac{{\text{1}}}{{{\text{25}}}} \times {\text{158 = 6}}{\text{.32}} \hfill \\ \end{align} $
6.
$\mathbf{{{\text{x}}_{\text{i}}}}$ | 10 | 30 | 50 | 70 | 90 |
$\mathbf{{{\text{f}}_{\text{i}}}}$ | 4 | 24 | 28 | 16 | 8 |
उत्तर:
${{\mathbf{\text{x}}_{\text{i}}}}$ | ${{\mathbf{\text{f}}_{\text{i}}}}$ | ${\mathbf{\text{x}}{{\text{f}}_{\text{i}}}}$ | $\mathbf{{\text{|}}{{\text{x}}_{\text{i}}}{{ - \tilde x|}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}{\text{|}}{{\text{x}}_{\text{i}}}{{ - \tilde x|}}}$ |
10 | 4 | 40 | 40 | 160 |
30 | 24 | 720 | 20 | 480 |
50 | 28 | 1400 | 0 | 0 |
70 | 16 | 1120 | 20 | 320 |
90 | 8 | 720 | 40 | 320 |
80 | 4000 | 1280 |
$\begin{align} {\text{N = }}\sum\limits_{{\text{i = 1}}}^{\text{5}} {{{\text{f}}_{\text{i}}}} {\text{ = 80 , }}\sum\limits_{{\text{i = 1}}}^{\text{5}} {{{\text{f}}_{\text{i}}}} {{\text{x}}_{\text{i}}}{\text{ = 4000}} \hfill \\ {{\bar {x} = }}\sum\limits_{{\text{i = 1}}}^{\text{5}} {{{\text{f}}_{\text{i}}}} {{\text{x}}_{\text{i}}}{\text{ = }}\dfrac{{\text{1}}}{{80}} \times 400{\text{0 = 50}} \hfill \\ {{M}}{{.D \times (\bar {x}) = }}\dfrac{{\text{1}}}{{\text{N}}}\sum\limits_{{\text{i = 1}}}^{\text{5}} {{{\text{f}}_{\text{i}}}} \left| {{{\text{x}}_{\text{i}}}{{ - \bar{ x}}}} \right|{\text{ = }}\dfrac{{\text{1}}}{{80}} \times 1280{\text{ = 16}} \hfill \\ \end{align} $
प्रश्न 7 एवं 8 के आंकड़ों के लिए माधायिका के सापेक्ष माध्य विचलन ज्ञात कीजिए:
7.
$\mathbf{{{\text{x}}_{\text{i}}}}$ | 5 | 7 | 9 | 10 | 12 | 15 |
$\mathbf{{{\text{f}}_{\text{i}}}}$ | 8 | 6 | 2 | 2 | 2 | 6 |
उत्तर: दिए गए अवलोकन पहले सेही बढ़ते क्रम मे है। दिए गए डेटा की संचयी आवर्तियों के अनुरोप कॉलम जोड़कर हम निम्र तालिका प्राप्त करते है
${{\mathbf{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}}$ | c.f. |
5 | 8 | 8 |
7 | 6 | 14 |
9 | 2 | 16 |
10 | 2 | 18 |
12 | 2 | 20 |
15 | 6 | 26 |
यहा N = $26$ जोकि सम है।
माधायिका $13$ वी और $14$ वी टिप्पणियों का माध्य है।
ये दोनों अवलों कण संचयी आवर्ती $14$ मे निहित है, जिसके लिए संबंधित अवलोकन $7$ है
माध्ययिक ${\text{ = }}\dfrac{{{\text{1}}{{\text{3}}^{{\text{th }}}}{\text{ observation + 1}}{{\text{4}}^{{\text{th }}}}{\text{ observation }}}}{{\text{2}}}{\text{ = }}\dfrac{{{\text{7 + 7}}}}{{\text{2}}}{\text{ = 7}}$
मध्य से विचलन के पूर्ण मान $\left| {{{\text{x}}_{\text{i}}}{\text{ - M}}} \right|$
$\mathbf{\left| {{{\text{x}}_{\text{i}}}{\text{ - M}}} \right|}$ | 2 | 0 | 2 | 3 | 5 | 8 |
$\mathbf{{{\text{f}}_{\text{i}}}}$ | 8 | 6 | 2 | 2 | 2 | 6 |
$\mathbf{{{\text{f}}_{\text{i}}}\mid {{\text{x}}_{\text{i}}}{\text{ - M}}\mid} $ | 16 | 0 | 4 | 6 | 10 | 48 |
$\sum\limits_{{\text{i = 1}}}^{\text{6}} {{{\text{f}}_{\text{i}}}} {\text{ = 26 , }}\sum\limits_{{\text{i = 1}}}^{\text{6}} {{{\text{f}}_{\text{i}}}} \left| {{{\text{x}}_{\text{i}}}{\text{ - M}}} \right|{\text{ = 84}}$
${\text{M}}{\text{.D}}{\text{.(M) = }}\dfrac{{\text{1}}}{{\text{N}}}\sum\limits_{{\text{i = 1}}}^{\text{6}} {{{\text{f}}_{\text{i}}}} \left| {{{\text{x}}_{\text{i}}}{\text{ - M}}} \right|{\text{ = }}\dfrac{{\text{1}}}{{{\text{26}}}} \times {\text{84 = 3}}{\text{.23}}$
8.
$\mathbf{{{\text{x}}_{\text{i}}}}$ | 15 | 21 | 27 | 30 | 35 |
$\mathbf{{{\text{f}}_{\text{i}}}}$ | 3 | 5 | 6 | 7 | 8 |
उत्तर: दिए गए अवलोकन पहले से ही बढ़ते क्रम मे है। दिए गए डेटा की संचयी आवर्तियों के अनुरूप कॉलम जोड़ने पर हम निम्नलिखित तालिका प्राप्त करते है।
$\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}}$ | c.f. |
15 | 3 | 3 |
21 | 5 | 8 |
27 | 6 | 14 |
30 | 7 | 21 |
35 | 8 | 29 |
यहा N = $29$ जो विषम है
माध्ययिक ${\text{ = (}}\dfrac{{{\text{29 + 1}}}}{{\text{2}}}{{\text{)}}^{{\text{th}}}}{\text{observation = 1}}{{\text{5}}^{{\text{th}}}}{\text{observation}}$
यह अवलोकन संचयी आवर्ती $21$ मे निहित है जिसके लिए संबंधित अवलोकन $30$ है।
माध्य = $30$
माध्य से विचलन के पूर्ण मान है $\left| {{{\text{x}}_{\text{i}}}{\text{ - M}}} \right|$
$\mathbf{\left| {{{\text{x}}_{\text{i}}}{\text{ - M}}} \right|}$ | 15 | 9 | 3 | 0 | 5 |
$\mathbf{{{\text{f}}_{\text{i}}}}$ | 3 | 5 | 6 | 7 | 8 |
$\mathbf{{{\text{f}}_{\text{i}}}\mid {{\text{x}}_{\text{i}}}{\text{ - M}}\mid}$ | 45 | 45 | 18 | 0 | 40 |
$\sum\limits_{{\text{i = 1}}}^5 {{{\text{f}}_{\text{i}}}} {\text{ = 29 , }}\sum\limits_{{\text{i = 1}}}^5 {{{\text{f}}_{\text{i}}}} \left| {{{\text{x}}_{\text{i}}}{\text{ - M}}} \right|{\text{ = 148}}$
${\text{M}}{\text{.D}}{\text{.(M) = }}\dfrac{{\text{1}}}{{\text{N}}}\sum\limits_{{\text{i = 1}}}^5 {{{\text{f}}_{\text{i}}}} \left| {{{\text{x}}_{\text{i}}}{\text{ - M}}} \right|{\text{ = }}\dfrac{{\text{1}}}{{{\text{29}}}} \times 148{\text{ = 5}}{\text{.1}}$
प्रश्न 9 एवं 10 के आंकड़ों के लिए माध्य के सापेक्ष माध्य विचलन ज्ञात कीजिए:
9.
आए प्रतिदिन | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 |
व्यक्तियों की संख्या | 4 | 8 | 9 | 10 | 7 | 5 | 4 | 3 |
उत्तर: निम्न तालिका बनाई गई है
आय प्रतिदिन | व्यक्तियों की संख्या | $\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{x}}_{\text{i}}}{{\text{f}}_{\text{i}}}}$ | $\mathbf{{\text{|}}{{\text{x}}_{\text{i}}}{{ - \tilde x|}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}{\text{|}}{{\text{x}}_{\text{i}}}{{ - \tilde x|}}}$ |
0-100 | 4 | 50 | 200 | 308 | 1232 |
100-200 | 8 | 150 | 1200 | 208 | 1664 |
200-300 | 9 | 250 | 2250 | 108 | 972 |
300-400 | 10 | 350 | 3500 | 8 | 80 |
400-500 | 7 | 450 | 3150 | 92 | 644 |
500-600 | 5 | 550 | 2750 | 192 | 960 |
600-700 | 4 | 650 | 2600 | 292 | 1168 |
700-800 | 3 | 750 | 2250 | 392 | 1176 |
50 | 17900 | 7896 |
$\begin{align} {\text{N = }}\sum\limits_{{\text{i = 1}}}^{\text{8}}{{{\text{f}}_{\text{i}}}} {\text{ = 50 , }}\sum\limits_{{\text{i = 1}}}^{\text{8}} {{{\text{f}}_{\text{i}}}} {{\text{x}}_{\text{i}}}{\text{ = 17900}} \hfill \\ {{\bar x = }}\dfrac{{\text{1}}}{{\text{N}}}\sum\limits_{{\text{i = 1}}}^{\text{8}} {{{\text{f}}_{\text{i}}}} {{\text{x}}_{\text{i}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{50}}}} \times {\text{17900 = 358}} \hfill \\ {\text{M}}{\text{.D}}{{.(\bar x) = }}\dfrac{{\text{1}}}{{\text{N}}}\sum\limits_{{\text{i = 1}}}^{\text{8}} {{{\text{f}}_{\text{i}}}} \left| {{{\text{x}}_{\text{i}}}{{ - \bar x}}} \right|{\text{ = }}\dfrac{{\text{1}}}{{{\text{50}}}} \times {\text{7896 = 157}}{\text{.92}} \hfill \\ \end{align} $
10.
आय प्रतिदिन | 95-105 | 105-115 | 115-125 | 125-135 | 135-145 | 145-155 |
लड़कों की संख्या | 9 | 13 | 26 | 30 | 12 | 10 |
उत्तर: निम्न तालिख बनाई गई है
उचाई | लड़कों की संख्या | ${{\text{x}}_{\text{i}}}$ | ${{\text{x}}_{\text{i}}}$${{\text{f}}_{\text{i}}}$ | ${\text{|}}{{\text{x}}_{\text{i}}}{{ - \tilde x|}}$ | ${{\text{f}}_{\text{i}}}{\text{|}}{{\text{x}}_{\text{i}}}{{ - \tilde x|}}$ |
95-105 | 9 | 100 | 900 | 25.3 | 227.7 |
105-115 | 13 | 110 | 1430 | 15.3 | 198.9 |
115-125 | 26 | 120 | 3120 | 5.3 | 137.8 |
125-135 | 30 | 130 | 3900 | 4.7 | 141 |
135-145 | 12 | 140 | 1680 | 14.7 | 176.4 |
145-155 | 10 | 150 | 1500 | 24.7 | 247 |
$\begin{align} {\text{N = }}\sum\limits_{{\text{i = 1}}}^6 {{{\text{f}}_{\text{i}}}} {\text{ = 100 , }}\sum\limits_{{\text{i = 1}}}^6 {{{\text{f}}_{\text{i}}}} {{\text{x}}_{\text{i}}}{\text{ = 12530}} \hfill \\ {{\bar {x} = }}\dfrac{{\text{1}}}{{\text{N}}}\sum\limits_{{\text{i = 1}}}^6 {{{\text{f}}_{\text{i}}}} {{\text{x}}_{\text{i}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{100}}}} \times 12530{\text{ = 125}}{\text{.3}} \hfill \\ {\text{M}}{\text{.D}}{{.(\bar{x}) = }}\dfrac{{\text{1}}}{{\text{N}}}\sum\limits_{{\text{i = 1}}}^6 {{{\text{f}}_{\text{i}}}} \left| {{{\text{x}}_{\text{i}}}{{ - \bar{ x}}}} \right|{\text{ = }}\dfrac{{\text{1}}}{{{\text{100}}}} \times 1128.8{\text{ = 11}}{\text{.28}} \hfill \\ \end{align} $
11. निम्नलिखित आंकड़ों के लिए माधायिका के सापेक्ष माध्य विचलन ज्ञात कीजिए:
अंक | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
लड़कियों की संख्या | 9 | 13 | 26 | 30 | 12 | 10 |
उत्तर: निम्न तालिका बनाई गई है
अंक | संख्या $\mathbf{{{\text{f}}_{\text{i}}}}$ | c.f. | $\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{\text{|}}{{\text{x}}_{\text{i}}}{{ - \tilde x|}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}{\text{|}}{{\text{x}}_{\text{i}}}{{ - \tilde x|}}}$ |
0-10 | 6 | 6 | 5 | 22.85 | 137.1 |
10-20 | 8 | 14 | 15 | 12.85 | 102.8 |
20-30 | 14 | 28 | 25 | 2.85 | 39.9 |
30-40 | 16 | 44 | 35 | 7.15 | 114.4 |
40-50 | 4 | 48 | 45 | 17.15 | 68.6 |
50-60 | 2 | 50 | 55 | 27.15 | 54.3 |
50 | 517.1 |
वेवग्रकों अंतरालया ${\text{20 - 30}}$ मे ${\left( {\dfrac{{\text{N}}}{{\text{2}}}} \right)^{{\text{th}}}}$ या ${\text{25}}$ वा आइटम है।
इसलिए ${\text{20 - 30}}$ माधायिका वर्ग है।
यह ज्ञात है कि
माधायिका ${\text{ = l + }}\dfrac{{\dfrac{{\text{N}}}{{\text{2}}}{\text{ - C}}}}{{\text{f}}} \times {\text{h}}$
यहा ${\text{l = 20, C = 14, f = 14, h = 10, N = 50}}$
माध्ययिक ${\text{ = 20 + }}\dfrac{{{\text{25 - 14}}}}{{{\text{14}}}} \times {\text{10 = 20 + }}\dfrac{{{\text{110}}}}{{{\text{14}}}}{\text{ = 20 + 7}}{\text{.85 = 27}}{\text{.85}}$
इस प्रकार माध्य विचलन के बारे मे माधायिका
${\text{M}}{\text{.D}}{\text{.(M) = }}\dfrac{{\text{I}}}{{\text{N}}}\sum\limits_{{\text{i = 1}}}^{\text{6}} {{{\text{f}}_{\text{i}}}} \left| {{{\text{x}}_{\text{i}}}{\text{ - M}}} \right|{\text{ = }}\dfrac{{\text{1}}}{{{\text{50}}}} \times {\text{517}}{\text{.1 = 10}}{\text{.34}}$
द्वारा दी गई है।
12. नीचे दिए गए $100$ व्यक्तियों की आयु के बंटन की माधायिका आयु के सापेक्ष माध्य विचलन को गणना कीजिए:
आयु (वर्ष मे ) | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 |
संख्या | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
[संकेत प्रत्येक वर्ग की निम्र सीमा मे से $0.5$ घटाकरव उसकी उच्च सीमा मे $0.5$ जोड़कर दिए गए आंकड़ों को सतत बारंबारता बंटन मे बदलिए।
उत्तर: दिया गया डेटा निरंतर नहीं है। इसलिए इसे निम्र आवर्ती से $0.5$ घटाकर और प्रत्येक वर्ग अंतराल की ऊपरी सीमा मे $0.5$ जोड़कर निरंतर आवर्ती वितरण मे परिवर्तित किया जाना है। तालिका निर्मानुसार बनाई गई है।
आयु | संख्या $\mathbf{{{\text{f}}_{\text{i}}}}$ | c.f. | $\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{\text{|}}{{\text{x}}_{\text{i}}}{{ - \tilde x|}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}{\text{|}}{{\text{x}}_{\text{i}}}{{ - \tilde x|}}}$ |
15.5-20.5 | 9 | 5 | 18 | 20 | 100 |
20.5-25.5 | 6 | 11 | 23 | 15 | 90 |
25.5-30.5 | 12 | 23 | 28 | 10 | 120 |
30.5-35.5 | 14 | 37 | 33 | 5 | 70 |
35.5-40.5 | 26 | 63 | 38 | 0 | 0 |
40.5-45.5 | 17 | 75 | 43 | 5 | 60 |
45.5-50.5 | 16 | 91 | 48 | 10 | 160 |
50.5-55.5 | 9 | 100 | 53 | 15 | 135 |
100 | 735 |
वेवरगका अंतरालया ${\text{35}}{\text{.5 - 40}}{\text{.5}}$ मे ${\text{50}}$ वा आइटम है।
इसलिए ${\text{35}}{\text{.5 - 40}}{\text{.5}}$ माधायिका वर्ग है।
यह ज्ञात है की
माधायिका ${\text{ = l + }}\dfrac{{\dfrac{{\text{N}}}{{\text{2}}}{\text{ - c}}}}{{\text{f}}} \times {\text{h}}$
यहा ${\text{l = 35}}{\text{.5, C = 37, f = 26, h = 5, N = 100}}$
माधायिका ${\text{ = 35}}{\text{.5 + }}\dfrac{{{\text{50 - 37}}}}{{{\text{26}}}} \times {\text{5 = 35}}{\text{.5 + }}\dfrac{{{\text{13}} \times {\text{5}}}}{{{\text{26}}}}{\text{ = 65}}{\text{.5 + 2}}{\text{.5 = 38}}$
इस प्रकार माध्य विचलन के बारे मे माध्ययिक
${\text{M}}{\text{.D}}{\text{.(M) = }}\dfrac{{\text{I}}}{{\text{N}}}\sum\limits_{{\text{i = 1}}}^{\text{8}} {{{\text{f}}_{\text{i}}}} \left| {{{\text{x}}_{\text{i}}}{\text{ - M}}} \right|{\text{ = }}\dfrac{{\text{1}}}{{{\text{100}}}} \times {\text{735 = 7}}{\text{.35}}$
द्वारा दी गई है।
प्रश्नावली 15.2
प्रश्न 1 से 5 तक के आंकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए:
1. $\mathbf{{\text{6,}}\;{\text{7,10, 12, 13, 4, 8, 12}}}$
उत्तर: हमलोग जानते है की
माध्य ${{\bar {X} = }}\dfrac{{{\text{6 + 7 + 10 + 12 + 13 + 4 + 8 + 12}}}}{{\text{8}}}{\text{ = }}\dfrac{{{\text{72}}}}{{\text{8}}}{\text{ = 9}}$
${{\text{X}}_{\text{i}}}$ | ${{\text{X}}_{\text{i}}}{\text{ - }}\overline {\text{X}} $ | ${{\text{(}}{{\text{X}}_{\text{i}}}{\text{ - }}\overline {\text{X}} )^2}$ |
6 | -3 | 9 |
7 | -2 | 4 |
10 | 1 | 1 |
12 | 3 | 9 |
13 | 4 | 16 |
4 | -5 | 25 |
8 | -1 | 1 |
12 | 3 | 9 |
प्रसरण ${\text{ = }}\dfrac{{\sum {{{\left( {{{\text{x}}_{\text{i}}}{\text{ - }}\overline {\text{X}} } \right)}^{\text{2}}}} }}{{\text{n}}}{\text{ = }}\dfrac{{{\text{74}}}}{{\text{8}}}{\text{ = 9}}{\text{.25}}$
2. प्रथम ${\text{n}}$ प्रकरत संखयाए
उत्तर: प्रथम ${\text{n}}$ प्रकरत संखयाए : ${{1, 2, 3, 4 \ldots }}..{\text{,n}}$
माध्य $\overline {\text{X}} {\text{ = }}\dfrac{{{\text{1 + 2 + 3 + }}......{\text{ + n}}}}{{\text{n}}}{\text{ = }}\dfrac{{{\text{n(n + 1)}}}}{{{\text{2n}}}}{\text{ = }}\dfrac{{{\text{(n + 1)}}}}{{\text{2}}}$
जानते है की प्रथम ${\text{n}}$ प्राकर्त संख्याओ का योग $\dfrac{{{\text{n(n + 1)}}}}{{\text{2}}}$ होता है।
प्रसरण ${\text{ = }}\dfrac{{\sum {{{\left( {{{\text{x}}_{\text{i}}}{\text{ - }}\overline {\text{x}} } \right)}^{\text{2}}}} }}{{\text{n}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}\left[ {{\text{n}}{{\sum {{{\text{x}}_{\text{i}}}} }^{\text{2}}}{\text{ - }}{{\left( {\sum {{{\text{x}}_{\text{i}}}} } \right)}^{\text{2}}}} \right]$
$\sum {{\text{x}}_{\text{i}}^{\text{2}}} {\text{ = }}{{\text{1}}^{\text{2}}}{\text{ + }}{{\text{2}}^{\text{2}}}{\text{ + }}{{\text{3}}^{\text{2}}}{\text{ + }}{{\text{4}}^{\text{2}}}{{ + \ldots \ldots + }}{{\text{n}}^{\text{2}}}{\text{ = }}\dfrac{{{\text{n(n + 1)(2n + 1)}}}}{{\text{6}}}$
प्रसरण ${\text{ = }}\dfrac{{\sum {{{\left( {{{\text{x}}_{\text{i}}}{\text{ - }}\overline {\text{x}} } \right)}^{\text{2}}}} }}{{\text{n}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}\left[ {{\text{n}}{{\sum {{{\text{x}}_{\text{i}}}} }^{\text{2}}}{\text{ - }}{{\left( {\sum {{{\text{x}}_{\text{i}}}} } \right)}^{\text{2}}}} \right]$
$\begin{align} {\text{ = }}\dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}{{ \times n \times }}\dfrac{{{\text{n(n + 1)(2n + 1)}}}}{{\text{6}}}{\text{ - }}\dfrac{{{{\text{n}}^{\text{2}}}{{{\text{(n + 1)}}}^{\text{2}}}}}{{\text{4}}} \hfill \\ {\text{ = }}\dfrac{{\text{1}}}{{{\text{12}}}}\left[ {{\text{2(n + 1)(2n + 1) - 3(n + 1}}{{\text{)}}^{\text{2}}}} \right] \hfill \\ \end{align} $
${\text{ = }}\dfrac{{{\text{n + 1}}}}{{{\text{12}}}}{\text{[2(2n + 1) - 3(n + 1)]}}$
$\begin{align} {\text{ = }}\dfrac{{{\text{n + 1}}}}{{{\text{12}}}}{\text{[4n + 2 - 3n - 3]}} \hfill \\ {\text{ = }}\dfrac{{{\text{(n + 1)(n - 1)}}}}{{{\text{12}}}} \hfill \\ {\text{ = }}\dfrac{{{{\text{n}}^{\text{2}}}{\text{ - 1}}}}{{{\text{12}}}} \hfill \\ \end{align} $
3. तीन के प्रथम ${\text{10}}$ गुणज
उत्तर: तीन के प्रथम ${\text{10}}$ गुणज ${\text{3, 6, 9, 12, 15, 18, 21, 24, 27, 30}}$
$\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}\; = \;\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - 15}}}}{{\text{3}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}^{\text{2}}}$ |
3 | -4 | 16 |
6 | -3 | 9 |
9 | -2 | 4 |
12 | -1 | 1 |
15 | 0 | 0 |
18 | 1 | 1 |
21 | 2 | 4 |
24 | 3 | 9 |
27 | 4 | 16 |
30 | 5 | 25 |
योग | 5 | 85 |
माध्य $\overline {\text{X}} {\text{ = A + }}\dfrac{{\sum {\left( {{{\text{y}}_{\text{i}}}} \right)} }}{{\text{n}}} \times {\text{h}}$
${\text{ = 15 + }}\dfrac{{\text{5}}}{{{\text{10}}}}{{ \times 3 = 15 + 1}}{\text{.5 = 16}}{\text{.5}}$
प्रसरण ${\text{ = }}\dfrac{{{{\text{h}}^{\text{2}}}}}{{{{\text{n}}^{\text{2}}}}}\left[ {{\text{n}}{{\sum {{{\text{y}}_{\text{i}}}} }^{\text{2}}}{\text{ - }}{{\left( {\sum {{{\text{y}}_{\text{i}}}} } \right)}^{\text{2}}}} \right]{\text{ = }}\dfrac{{\text{9}}}{{{\text{100}}}}{{[10 \times 85 - 25] = 74}}{\text{.25}}$
4.
${{\text{x}}_{\text{i}}}$ | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
${{\text{f}}_{\text{i}}}$ | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
उत्तर:
$\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{x}}_{\text{i}}}{{ - \bar x}}}$ | $\mathbf{{{\text{(}}{{\text{x}}_{\text{i}}}{{ - \bar x)}}^2}}$ | $\mathbf{{{\text{f}}_{\text{i}}}{{\text{(}}{{\text{x}}_{\text{i}}}{{ - \bar x)}}^2}}$ |
6 | 2 | 12 | -13 | 169 | 338 |
10 | 4 | 40 | -9 | 81 | 324 |
14 | 7 | 98 | -5 | 25 | 175 |
18 | 12 | 216 | -1 | 1 | 12 |
24 | 8 | 192 | 5 | 25 | 200 |
28 | 4 | 112 | 9 | 81 | 324 |
30 | 3 | 90 | 11 | 121 | 363 |
योग | 40 | 760 | 1736 |
माध्य ${{\bar {X} = }}\dfrac{{{\text{760}}}}{{{\text{40}}}}{\text{ = 19}}$
प्रसरण ${\text{ = }}\dfrac{{\sum {\text{f}} {\text{i}}{{\left( {{{\text{x}}_{\text{i}}}{{ - \bar {x}}}} \right)}^{\text{2}}}}}{{\text{N}}}{\text{ = }}\dfrac{{{\text{1736}}}}{{{\text{40}}}}{\text{ = 43}}{\text{.4}}$
5.
${{\text{x}}_{\text{i}}}$ | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
${{\text{f}}_{\text{i}}}$ | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
उत्तर: माना की कल्पित माध्य A = $98$ है
इसलिए ${{\text{y}}_{\text{i}}}\;{\text{ = }}\;{{\text{x}}_{\text{i}}}{\text{ - 98}}$
$\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}}$ | $\mathbf{{\text{f}}{{\text{y}}_{\text{i}}}}$ | ${{\text{y}}_{\text{i}}}^2$ | ${\text{f}}{{\text{y}}_{\text{i}}}^2$ |
92 | 3 | -6 | -18 | 36 | 108 |
93 | 2 | -5 | -10 | 25 | 50 |
97 | 3 | -1 | -3 | 1 | 3 |
98 | 2 | 0 | 0 | 0 | 0 |
102 | 6 | 4 | 24 | 16 | 96 |
104 | 3 | 6 | 18 | 36 | 108 |
109 | 3 | 11 | 33 | 121 | 363 |
योग | 22 | 44 | 728 |
माध्य $\overline {\text{X}} {\text{ = A + }}\dfrac{{\sum {{\text{fi}}} \left( {{{\text{y}}_{\text{i}}}} \right)}}{{\text{N}}}{\text{ = 98 + }}\dfrac{{{\text{44}}}}{{{\text{22}}}}{\text{ = 98 + 2 = 100}}$
प्रसरण ${\text{ = }}\dfrac{{\text{1}}}{{{{\;}}{{\text{N}}^{\text{2}}}}}\left[ {{{\;N}}\sum {{{\text{f}}_{\text{i}}}} {\text{y}}_{\text{i}}^{\text{2}}{\text{ - }}{{\left( {\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}} \right)}^{\text{2}}}} \right]{\text{ = }}\dfrac{{\text{1}}}{{{\text{2}}{{\text{2}}^{\text{2}}}}}{{[22 \times 728 - 44}} \times {\text{44]}}$
${\text{ = }}\dfrac{{\text{1}}}{{{\text{22}}}}{\text{[728 - 88] = }}\dfrac{{{\text{640}}}}{{{\text{22}}}}{\text{ = }}\dfrac{{{\text{320}}}}{{{\text{11}}}}{\text{ = 29}}{\text{.09}}$
6. लघु विधि द्वारा माध्य व मानक विचलन ज्ञात कीजिए:
$\mathbf{{{\text{x}}_{\text{i}}}}$ | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 |
$\mathbf{{{\text{f}}_{\text{i}}}}$ | 2 | 1 | 12 | 29 | 25 | 12 | 10 | 4 | 5 |
उत्तर: माना की कल्पित माध्य A = ${\text{64}}$ है
इसलिए ${{\text{y}}_{{i}}}\;{\text{ = }}\;{{\text{x}}_{\text{i}}}{\text{ - 64}}$
$\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}{{\text{y}}_{\text{i}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}^2}$ | $\mathbf{{\text{f}}{\text{.(}}{{\text{y}}_{\text{i}}}^2)}$ |
60 | 2 | -4 | -8 | 16 | 32 |
61 | 1 | -3 | -3 | 9 | 9 |
62 | 12 | -2 | -24 | 4 | 48 |
63 | 29 | -1 | -29 | 1 | 29 |
64 | 25 | 0 | 0 | 0 | 0 |
65 | 12 | 1 | 12 | 1 | 12 |
66 | 10 | 2 | 20 | 4 | 40 |
67 | 4 | 3 | 12 | 9 | 36 |
68 | 5 | 4 | 20 | 16 | 80 |
योग | 100 | 0 | 16 | 286 |
माध्य $\overline {\text{X}} {\text{ = A + }}\dfrac{{\sum {{\text{fi}}} \left( {{{\text{y}}_{\text{i}}}} \right)}}{{\text{N}}}{\text{ = 64 + 0 = 64}}$
प्रसरण ${{{\sigma }}^{\text{2}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\;}}{{\text{N}}^{\text{2}}}}}\left[ {{{\;N}}\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}^{\text{2}}{\text{ - }}{{\left( {\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}} \right)}^{\text{2}}}} \right]{\text{ = }}\dfrac{{\text{1}}}{{{\text{10}}{{\text{0}}^{\text{2}}}}}{{[100}} \times {\text{286 - 0] = }}\dfrac{{{\text{286}}}}{{{\text{100}}}}{\text{ = 2}}{\text{.86}}$
मानक विचलन ${{\sigma = }}\sqrt {{\text{2}}{\text{.86}}} {\text{ = 1}}{\text{.69}}$
प्रश्न 7 व 8 मे दिए गए बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए।
7.
वर्ग | 0-30 | 30-60 | 60-90 | 90-120 | 120-150 | 150-180 | 120-110 |
बारंबारता | 2 | 3 | 5 | 10 | 3 | 5 | 2 |
उत्तर: माना की कल्पित माध्य A = ${\text{105}}$ है
वर्ग अंतराल ${\text{ = h = 30}}$
${{\text{y}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{h}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - 15}}}}{{\text{h}}}$
वर्ग | ${{\text{x}}_{\text{i}}}$ | ${{\text{f}}_{\text{i}}}$ | ${{\text{y}}_{\text{i}}}$ | ${{\text{f}}_{\text{i}}}{{\text{y}}_{\text{i}}}$ | ${{\text{y}}_{\text{i}}}^2$ | ${\text{f}}{\text{.(}}{{\text{y}}_{\text{i}}}^2)$ |
0-30 | 15 | 2 | -3 | -6 | 9 | 18 |
30-60 | 45 | 3 | -2 | -6 | 4 | 12 |
60-90 | 75 | 5 | -1 | -5 | 1 | 5 |
90-120 | 105 | 10 | 0 | 0 | 0 | 0 |
120-150 | 135 | 3 | 1 | 3 | 1 | 3 |
150-180 | 165 | 5 | 2 | 10 | 4 | 20 |
180-210 | 195 | 2 | 3 | 6 | 9 | 18 |
योग | 30 | 2 | 76 |
माध्य $\overline {\text{X}} {\text{ = A + }}\dfrac{{\sum {{\text{fi}}} \left( {{{\text{y}}_{\text{i}}}} \right)}}{{\text{N}}}{\text{ = 105 + }}\dfrac{{\text{2}}}{{{\text{30}}}}{{ \times 30 = 107}}$
प्रसरण ${{{\sigma }}^{\text{2}}}{\text{ = }}\dfrac{{{{\text{h}}^{\text{2}}}}}{{{{\text{n}}^{\text{2}}}}}\left[ {{\text{\;N}}\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}^{\text{2}}{\text{ - }}{{\left( {\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}} \right)}^{\text{2}}}} \right]{\text{ = }}\dfrac{{{{30 \times 30}}}}{{{\text{30 \times 30}}}}{{[30 \times 76 - 2 \times 2] = 2280 - 4 = 2276}}$
8.
वर्ग | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
बारंबारता | 5 | 8 | 15 | 16 | 6 |
उत्तर: माना की कल्पित माध्य A = ${\text{25}}$ है
वर्ग अंतराल ${\text{ = h = 10}}$
${{\text{y}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{h}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - 25}}}}{{\text{h}}}$
वर्ग | ${{\text{x}}_{\text{i}}}$ | ${{\text{y}}_{\text{i}}}$ | ${{\text{f}}_{\text{i}}}$ | ${{\text{f}}_{\text{i}}}{{\text{y}}_{\text{i}}}$ | ${{\text{y}}_{\text{i}}}^2$ | ${\text{f}}{\text{.(}}{{\text{y}}_{\text{i}}}^2)$ |
0-10 | 5 | 5 | -2 | -10 | 4 | 20 |
10-20 | 15 | 8 | -1 | -8 | 1 | 8 |
20-30 | 25 | 15 | 0 | 0 | 0 | 0 |
30-40 | 35 | 16 | 1 | 16 | 1 | 16 |
40-50 | 45 | 6 | 2 | 12 | 4 | 24 |
योग | 50 | 10 | 68 |
माध्य $\overline {\text{X}} {\text{ = A + }}\dfrac{{\sum {{\text{fi}}} \left( {{{\text{y}}_{\text{i}}}} \right)}}{{\text{N}}}{\text{ = 25 + }}\dfrac{{{\text{10}}}}{{{\text{50}}}}{{ \times 10 = 27}}$
प्रसरण ${{{\sigma }}^{\text{2}}}{\text{ = }}\dfrac{{{{\text{h}}^{\text{2}}}}}{{{{\text{n}}^{\text{2}}}}}\left[ {{{\;N}}\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}^{\text{2}}{\text{ - }}{{\left( {\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}} \right)}^{\text{2}}}} \right]{\text{ = }}\dfrac{{{{10 \times 10}}}}{{{\text{50x50}}}}{\text{[50}} \times {\text{68 - 100] = }}\dfrac{{{\text{50}}}}{{{\text{25}}}}{\text{[68 - 2] = 132}}$
9. लघु विधि द्वारा माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए:
उचाई (सेमी मे) | 70-75 | 75-80 | 80-85 | 85-90 | 90-95 | 95-100 | 100-105 | 105-110 | 110-115 |
बच्चों की संख्या | 3 | 4 | 7 | 7 | 15 | 9 | 6 | 6 | 3 |
उत्तर: माना की कल्पित माध्य A = $92.5$ है
वर्ग अंतराल ${\text{ = h = 5}}$
${{\text{y}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{h}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - 92}}{\text{.5}}}}{{\text{h}}}$
वर्ग | $\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}{{\text{y}}_{\text{i}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}^2}$ | $\mathbf{{\text{f}}{\text{.(}}{{\text{y}}_{\text{i}}}{)^2}}$ |
70-75 | 72.5 | 3 | -4 | -12 | 16 | 48 |
75-80 | 77.5 | 4 | -3 | -12 | 9 | 36 |
80-85 | 82.5 | 7 | -2 | -14 | 4 | 28 |
85-90 | 87.5 | 7 | -1 | -7 | 1 | 7 |
90-95 | 92.5 | 15 | 0 | 0 | 0 | 0 |
95-100 | 97.5 | 9 | 1 | 9 | 1 | 9 |
100-105 | 102.5 | 6 | 2 | 12 | 4 | 24 |
105-110 | 107.5 | 6 | 3 | 18 | 9 | 54 |
110-115 | 112.5 | 3 | 4 | 12 | 16 | 48 |
योग | 60 | 6 | 254 |
माध्य $\overline {\text{X}} {\text{ = A + }}\dfrac{{{{\Sigma fi}}\left( {{{\text{y}}_{\text{i}}}} \right)}}{{\text{N}}}{\text{ = 92}}{\text{.5 + }}\dfrac{{\text{6}}}{{{\text{60}}}}{{ \times 5 = 92}}{\text{.5 + 0}}{\text{.5 = 93}}$
प्रसरण ${{{\sigma }}^{\text{2}}}{\text{ = }}\dfrac{{{{\text{h}}^{\text{2}}}}}{{{{\text{n}}^{\text{2}}}}}\left[ {{{\;N}}\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}^{\text{2}}{\text{ - }}{{\left( {\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}} \right)}^{\text{2}}}} \right]{\text{ = }}\dfrac{{{\text{25}}}}{{{\text{3600}}}}{\text{[60}} \times {\text{254 - 3] = }}\dfrac{{\text{1}}}{{{\text{12}}}}{\text{[1270 - 3] = }}\dfrac{{{\text{1267}}}}{{{\text{12}}}}{\text{ = 105}}{\text{.58}}$
मानक विचलन ${{\sigma = }}\sqrt {{\text{105}}{\text{.58}}} {\text{ = 10}}{\text{.28}}$
10. एक डिजाइन मे बनाए गए व्रतों के व्यास (मिमी मे) नीचे दिए गए है:
वर्ग | 33-36 | 37-40 | 41-44 | 45-48 | 49-52 |
बारबारता | 15 | 17 | 21 | 22 | 25 |
व्रतों के व्यासो का मानक विचलन व माध्य व्यास ज्ञात कीजिए:
उत्तर: दिए गए असतत आंकड़ों को सतत बारंबारता बंटन मे बदलने के लिए वर्ग अंतराल इस प्रकार है ${\text{32}}{\text{.5 - 36}}{\text{.5 , 36}}{\text{.5 - 40}}{\text{.5 , 40}}{\text{.5 - 44}}{\text{.5 , 44}}{\text{.5 - 48}}{\text{.5 , 48}}{\text{.5 - 52}}{\text{.5}}$
माना की कल्पित माध्य A = ${\text{42}}{\text{.5}}$
वर्ग अंतराल ${\text{h = 4}}$
${{\text{y}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{h}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - 42}}{\text{.5}}}}{{\text{4}}}$
वर्ग | $\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}{{\text{y}}_{\text{i}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}^2}$ | $\mathbf{{\text{f}}{\text{.(}}{{\text{y}}_{\text{i}}}{)^2}}$ |
32.5-36.5 | 34.5 | 15 | -2 | -30 | 4 | 60 |
36.5-40.5 | 38.4 | 17 | -1 | -17 | 1 | 17 |
40.5-44.5 | 42.5 | 21 | 0 | 0 | 0 | 0 |
44.5-48.5 | 42.5 | 22 | 1 | 22 | 1 | 22 |
48.5-52.5 | 50.5 | 25 | 2 | 50 | 4 | 100 |
योग | 100 | 25 |
माध्य $\overline {\text{X}} {\text{ = A + }}\dfrac{{\sum {{\text{fi}}} \left( {{{\text{y}}_{\text{i}}}} \right)}}{{\text{N}}}{\text{ = 42}}{\text{.5 + }}\dfrac{{{\text{25}}}}{{{\text{100}}}}{{ \times 4 = 42}}{\text{.5 + 1 = 43}}{\text{.5}}$
प्रसरण ${{{\sigma }}^{\text{2}}}{\text{ = }}\dfrac{{{{\text{h}}^{\text{2}}}}}{{{{\text{n}}^{\text{2}}}}}\left[ {{{\;N}}\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}^{\text{2}}{\text{ - }}{{\left( {\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}} \right)}^{\text{2}}}} \right]{\text{ = }}\dfrac{{{\text{16}}}}{{{\text{10000}}}}{\text{[100}} \times {\text{199 - 25] = }}\dfrac{{{\text{16x25}}}}{{{{100 \times 100}}}}{{[4 \times 99 - 25] = }}\dfrac{{\text{1}}}{{{\text{25}}}}{\text{(796 - 25) = 30}}{\text{.84}}$
मानक विचलन ${{\sigma = }}\sqrt {{\text{30}}{\text{.84}}} {\text{ = 5}}{\text{.56}}$
प्रश्नावली 15.3
1. निम्नलिखित आंकड़ों से बताइए कि A या B मे से किस मे अधिक बिखराव है:
अंक | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
समूह A | 9 | 17 | 32 | 33 | 40 | 10 | 9 |
समूह B | 10 | 20 | 30 | 25 | 43 | 15 | 7 |
उत्तर: दिए गए असतत आंकड़ों को सतत बारंबारता बंटन मे बदलने के लिए वर्ग अंतराल इस प्रकार है।
माना की कल्पित माध्य A = ${\text{45}}$
वर्ग अंतराल ${\text{ = h = 10}}$
${{\text{y}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{h}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - 45}}}}{{\text{h}}}$
वर्ग | $\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}{\text{ }}}$ | समूह A के लिए | समूह B के लिए | ||||
$\mathbf{{{\text{f}}_{\text{i}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}{\text{ }}}$ | $\mathbf{{{\text{f}}_{\text{i}}}{{\text{y}}_{\text{i}}}^{\text{2}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}{{\text{f}}_{\text{i}}}}$ | $\mathbf{{{\text{f}}_{\text{i}}}{{\text{y}}_{\text{i}}}^{\text{2}}}$ | |||
10-20 | 15 | -3 | 9 | -27 | 81 | 10 | -30 | 90 |
20-30 | 25 | -2 | 17 | -34 | 68 | 20 | -40 | 80 |
30-40 | 35 | -1 | 32 | -32 | 32 | 30 | -30 | 30 |
40-50 | 45 | 0 | 33 | 0 | 0 | 25 | 0 | 0 |
50-60 | 55 | 1 | 40 | 40 | 40 | 43 | 43 | 43 |
60-70 | 65 | 2 | 10 | 20 | 20 | 15 | 30 | 60 |
70-80 | 75 | 3 | 9 | 27 | 27 | 7 | 21 | 63 |
योग | 150 | -6 | 342 | 150 | -6 | 366 |
समूह A के लिए
माध्य $\overline {\text{X}} {\text{ = A + }}\dfrac{{\sum {{\text{fi}}} \left( {{{\text{y}}_{\text{i}}}} \right)}}{{\text{N}}}{\text{ = 45 + }}\dfrac{{{\text{ - 6}}}}{{{\text{150}}}}{{ \times 10 = 45 + }}\dfrac{{{\text{ - 2}}}}{{\text{5}}}{\text{ = 44}}{\text{.6}}$
प्रसरण ${{{\sigma }}^{\text{2}}}{\text{ = }}\dfrac{{{{\text{h}}^{\text{2}}}}}{{{{\text{n}}^{\text{2}}}}}\left[ {{{\;N}}\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}^{\text{2}}{\text{ - }}{{\left( {\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}} \right)}^{\text{2}}}} \right]{\text{ = }}\dfrac{{{\text{100}}}}{{{\text{22500}}}}{{[150}} \times {\text{342 - 36] = }}\dfrac{{{\text{36}}}}{{{\text{225}}}}{{[25 \times 57 - 1] = }}\dfrac{{\text{4}}}{{{\text{25}}}}{\text{(1425 - 1) = 227}}{\text{.84}}$
मानक विचलन ${{\sigma = }}\sqrt {{\text{227}}{\text{.84}}} {\text{ = 15}}{\text{.09}}$
विचरण गुणांक ${\text{ = }}\dfrac{{{\sigma }}}{{{{\bar{ x}}}}}{{ \times 100 = }}\dfrac{{{\text{15}}{\text{.09}}}}{{{\text{44}}{\text{.6}}}}{{ \times 100 = 33}}{\text{.83}}$
समूह B के लिए
माध्य $\overline {\text{X}} {\text{ = A + }}\dfrac{{\sum {{\text{fi}}} \left( {{{\text{y}}_{\text{i}}}} \right)}}{{\text{N}}}{\text{ = 45 + }}\dfrac{{{\text{ - 6}}}}{{{\text{150}}}}{{ \times 10 = 45 + }}\dfrac{{{\text{ - 2}}}}{{\text{5}}}{\text{ = 44}}{\text{.6}}$
प्रसरण ${{{\sigma }}^{\text{2}}}{\text{ = }}\dfrac{{{{\text{h}}^{\text{2}}}}}{{{{\text{n}}^{\text{2}}}}}\left[ {{{\;N}}\sum {{{\text{f}}_{\text{i}}}} {\text{y}}_{\text{i}}^{\text{2}}{\text{ - }}{{\left( {\sum {{{\text{f}}_{\text{i}}}} {{\text{y}}_{\text{i}}}} \right)}^{\text{2}}}} \right]{\text{ = }}\dfrac{{{\text{100}}}}{{{\text{22500}}}}{\text{[150}} \times {\text{366 - 36] = }}\dfrac{{{\text{36}}}}{{{\text{225}}}}{\text{[25 \times 61 - 1] = }}\dfrac{{\text{4}}}{{{\text{25}}}}{\text{(1525 - 1) = 243}}{\text{.84}}$
मानक विचरण ${{\sigma = }}\sqrt {{\text{243}}{\text{.84}}} {\text{ = 15}}{\text{.62}}$
विचरण गुणांक ${\text{ = }}\dfrac{{{\sigma }}}{{\overline {\text{x}} }}{{ \times 100 = }}\dfrac{{{\text{15}}{\text{.62}}}}{{{\text{44}}{\text{.6}}}}{{ \times 100 = 35}}{\text{.02}}$
समूह B विचरण गुणांक समूह A से ज्यादा है इसलिए समूह B मे अंकों का बिखराव अधिक होगा।
2. शेयरों X और Y के नीचे दिए गए मूल्यों से बताइए की किस के मूल्यों मे अधिक स्थिरता है ?
X | 35 | 54 | 52 | 53 | 56 | 58 | 52 | 50 | 51 | 49 |
Y | 108 | 107 | 106 | 105 | 106 | 107 | 104 | 103 | 104 | 101 |
उत्तर: माना की शेयर X के आंकड़ों मे कल्पित माध्य ${\text{52}}$ है
माना की शेयर Y के आंकड़ों मे कल्पित माध्य ${\text{105}}$ है
शेयर X के लिए | शेयर Y के लिए | ||||
$\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}\;{\text{ = }}\;{{\text{x}}_{\text{i}}}{\text{ - 52}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}^2}$ | $\mathbf{{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}\;{\text{ = }}\;{{\text{x}}_{\text{i}}}{\text{ - 52}}}$ | $\mathbf{{{\text{y}}_{\text{i}}}^2}$ |
35 | -17 | 289 | 108 | 3 | 9 |
54 | 2 | 4 | 107 | 2 | 4 |
52 | 0 | 0 | 105 | 0 | 0 |
53 | 1 | 1 | 105 | 0 | 0 |
56 | 4 | 16 | 106 | 1 | 1 |
58 | 6 | 36 | 107 | 2 | 4 |
52 | 0 | 0 | 104 | -1 | 1 |
50 | -2 | 4 | 103 | -2 | 4 |
51 | -1 | 1 | 104 | -1 | 1 |
49 | -3 | 9 | 101 | -4 | 16 |
योग | -10 | 360 | 0 | 40 |
शेयर X के लिए
माध्य $\overline {\text{X}} {\text{ = A + }}\dfrac{{{{\Sigma }}\left( {{{\text{y}}_{\text{i}}}} \right)}}{{\text{n}}}{\text{ = 52 + }}\dfrac{{{\text{ - 10}}}}{{{\text{10}}}}{\text{ = 52 - 1 = 51}}$
प्रसरण ${{{\sigma }}^{\text{2}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}\left[ {{\text{n}}{{\sum {{{\text{y}}_{\text{i}}}} }^{\text{2}}}{\text{ - }}{{\left( {\sum {{{\text{y}}_{\text{i}}}} } \right)}^{\text{2}}}} \right]{\text{ = }}\dfrac{{\text{1}}}{{{\text{100}}}}{{[10 \times 360}} \times {\text{100] = 36 - 1 = 35}}$
मानक विचलन ${{\sigma = }}\sqrt {{\text{35}}} {\text{ = 5}}{\text{.916}}$
विचरण गुणांक ${\text{ = }}\dfrac{{{\sigma }}}{{{{\bar {x}}}}}{{ \times 100 = }}\dfrac{{{\text{5}}{\text{.916}}}}{{{\text{51}}}}{{ \times 100 = 11}}{\text{.6}}$
शेयर Y के लिए
माध्य $\overline {\text{X}} {\text{ = A + }}\dfrac{{\sum {\left( {{{\text{y}}_{\text{i}}}} \right)} }}{{\text{n}}}{\text{ = 105 + }}\dfrac{{\text{0}}}{{{\text{10}}}}{\text{ = 105}}$
प्रसरण ${{{\sigma }}^{\text{2}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}\left[ {{\text{n}}{{\sum {{{\text{y}}_{\text{i}}}} }^{\text{2}}}{\text{ - }}{{\left( {\sum {{{\text{y}}_{\text{i}}}} } \right)}^{\text{2}}}} \right]{\text{ = }}\dfrac{{\text{1}}}{{{\text{100}}}}{{[10 \times 40 - 0] = 4}}$
मानक विचलन ${{\sigma = }}\sqrt {\text{4}} {\text{ = 2}}$
विचरण गुणांक ${\text{ = }}\dfrac{{{\sigma }}}{{{{\bar {x}}}}}{{ \times 100 = }}\dfrac{{\text{2}}}{{{\text{105}}}}{{ \times 100 = 1}}{\text{.9}}$
समूह X विचरण गुणांक समूह Y से ज्यादा है इसलिए समूह Y मे अंकों का स्थिरता अधिक है।
3. एक कारखाने की दो फ़र्मों A और B के कर्मचारियों को दिए मासिक वेतन के विश्लेषण का निम्नलिखित परिणाम है
फर्म A | फर्म B | |
वेतन पाने वाले कर्मचारियों की संख्या | 586 | 648 |
मासिक वेतनों का माध्य | 5253 | 5253 |
वेतनों के बंतानों का प्रसरण | 100 | 121 |
उत्तर: फर्म A के लिए
A द्वारा दिया गया कुल वेतन = ${{5253 \times 586}}\;{\text{ = }}\,{\text{3078258}}$
मानक विचलन ${{\sigma }}\;{{ = }}\;\sqrt {{{100}}} \;{\text{ = }}\;{\text{10}}$
विचरण गुणांक $\dfrac{{{\sigma }}}{{{{\bar {x}}}}}{{ \times 100}}\;{{ = }}\;\dfrac{{{\text{10}}}}{{{\text{5253}}}}{{ \times 100}}\;{\text{ = }}\;{\text{0}}{\text{.19}}$
फर्म B के लिए
A द्वारा दिया गया कुल वेतन = ${{5253 \times 648}}\;{\text{ = }}\,{\text{3403944}}$
मानक विचलन ${{\sigma }}\;{\text{ = }}\;\sqrt {{\text{121}}} \;{\text{ = }}\;{\text{11}}$
विचरण गुणांक $\dfrac{{{\sigma }}}{{{{\bar{ x}}}}}{{ \times 100}}\;{\text{ = }}\;\dfrac{{{\text{11}}}}{{{\text{5253}}}}{{ \times 100}}\;{\text{ = }}\;{\text{0}}{\text{.21}}$
(i) A और B मे से कौन सी फर्म अपने कर्मचारियों को वेतन के रूप मे अधिक राशि देती है?
उत्तर: A द्वारा दिया गया कुल वेतन = ${{5253 \times 586}}\;{\text{ = }}\,{\text{3078258}}$
B द्वारा दिया गया कुल वेतन = ${{5253 \times 648}}\;{\text{ = }}\,{\text{3403944}}$
(ii) व्यक्तिगत वेतनों मे किस फर्म A या B मे अधिक विचरण है?
उत्तर: फार्म A के वेतन बंटन की विचरण गुणांक = ${\text{0}}{\text{.19}}$
फार्म B के वेतन बंटन की विचरण गुणांक = ${\text{0}}{\text{.21}}$
फार्म B के वेतन बंटन मे अधिक बिखराव है।
4. टीम A द्वारा एक सत्र मे खेले गए फुटबॉल मैचो के आँकड़े नीचे दिए गए है:
किये गए गोलो की संख्या | 0 | 1 | 2 | 3 | 4 |
मैचो की संख्या | 1 | 9 | 7 | 5 | 3 |
टीम B द्वारा खेले गए मैचो मे बनाए गए गोलो का माध्य दो प्रति मैच और गोलो का मानक विचलन ${\text{1}}{\text{.25}}$ था। किस टीम को अधिक संगत समझ जाना चाहिए?
उत्तर:
किये गए गोलो की संख्या ( $\mathbf{{{\text{x}}_{\text{i}}}} )$ | मैचो की संख्या ($\mathbf{{{\text{y}}_{\text{i}}}}$ ) | $\mathbf{{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}}$ | $\mathbf{{{\text{x}}_{\text{i}}}^2}$ | $\mathbf{{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}^2}$ |
0 | 1 | 0 | 0 | 0 |
1 | 9 | 9 | 1 | 9 |
2 | 7 | 14 | 4 | 28 |
3 | 5 | 15 | 9 | 45 |
4 | 3 | 12 | 16 | 48 |
25 | 50 | 130 |
टीम A के लिए
माध्य $\overline {\text{X}} {\text{ = }}\dfrac{{\sum {{\text{fi}}} \left( {{{\text{x}}_{\text{i}}}} \right)}}{{\text{N}}}{\text{ = }}\dfrac{{{\text{50}}}}{{{\text{25}}}}{\text{ = 2}}$
मानक विचलन ${{\sigma = }}\dfrac{{\text{1}}}{{\text{N}}}\sqrt {\left[ {{\text{N}}\sum {{{\text{f}}_{\text{i}}}} {\text{x}}_{\text{i}}^{\text{2}}{\text{ - }}{{\left( {\sum {{{\text{f}}_{\text{i}}}} {{\text{x}}_{\text{i}}}} \right)}^{\text{2}}}} \right]} {\text{ = }}\dfrac{{\text{1}}}{{{\text{25}}}}\sqrt {{{[25 \times 130 - 50 \times 50]}}} {\text{ = }}\dfrac{{\text{5}}}{{{\text{25}}}}\sqrt {{\text{[130 - 100]}}} {\text{ = }}\dfrac{{\text{1}}}{{\text{5}}}\sqrt {{\text{(30)}}} {\text{ = 1}}{\text{.095}}$
विचरण गुणांक ${\text{ = }}\dfrac{{{\sigma }}}{{\overline {\text{x}} }}{{ \times 100 = }}\dfrac{{{\text{1}}{\text{.095}}}}{{\text{2}}}{{ \times 100 = 54}}{\text{.75}}$
टीम B के लिए
माध्य $\overline {\text{X}} {\text{ = 2}}$
मानक विचलन ${{\sigma = 15}}{\text{.62}}$
विचरण गुणांक ${\text{ = }}\dfrac{{{\sigma }}}{{\overline {\text{x}} }}{{ \times 100 = }}\dfrac{{{\text{1}}{\text{.25}}}}{{\text{2}}}{{ \times 100 = 62}}{\text{.5}}$
टीम B विकर्ण गुणांक टीम A से ज्यादा है इसलिए समूह A मे अंकों की स्थिरता अधिक है।
5. पचास वनस्पति उत्पादों की लंबाई ${\text{x }}$ (सेमी मे) और भार ${\text{y}}$ (ग्राम मे) के योग और वर्गों के नीचे दिए गए है:
$\sum\limits_{{\text{i = 1}}}^{{\text{50}}} {{{\text{x}}_{\text{i}}}} {\text{ = 212}}$ , $\sum\limits_{{\text{i = 1}}}^{{\text{50}}} {{\text{x}}_{\text{i}}^{\text{2}}} {\text{ = 902}}{\text{.8}}$ , $\sum\limits_{{\text{i = 1}}}^{{\text{50}}} {{{\text{y}}_{\text{i}}}} {\text{ = 261}}$ , $\sum\limits_{{\text{i = 1}}}^{{\text{50}}} {{\text{y}}_{\text{i}}^{\text{2}}} {\text{ = 1457}}{\text{.6}}$
लंबाई या भार मे किसमे अधिक विचरण है।
उत्तर: लंबाई के लिए
$\begin{align} {\text{n = 50}} \hfill \\ \sum\limits_{{\text{i = 1}}}^{{\text{50}}} {{{\text{x}}_{\text{i}}}} {\text{ = 212 , }}\sum\limits_{{\text{i = 1}}}^{{\text{50}}} {{\text{x}}_{\text{i}}^{\text{2}}} {\text{ = 902}}{\text{.8}} \hfill \\ \end{align} $
माध्य $\overline {\text{X}} {\text{ = }}\dfrac{{{\text{212}}}}{{{\text{50}}}}{\text{ = 4}}{\text{.24}}$
${{\sigma = }}\dfrac{{\text{1}}}{{\text{n}}}\sqrt {\left[ {{\text{n}}\sum {{\text{x}}_{\text{i}}^{\text{2}}} {\text{ - }}{{\left( {\sum {{{\text{x}}_{\text{i}}}} } \right)}^{\text{2}}}} \right]} {\text{ = }}\dfrac{{\text{1}}}{{{\text{50}}}}\sqrt {{{50 \times 902}}{\text{.8 - 21}}{{\text{2}}^{\text{2}}}} {\text{ = }}\dfrac{{\text{1}}}{{{\text{50}}}}\sqrt {{\text{45140 - 44944}}} {\text{ = 0}}{\text{.28}}$
विचरण गुणांक ${\text{ = }}\dfrac{{{\sigma }}}{{\overline {\text{x}} }}{{ \times 100 = }}\dfrac{{{\text{0}}{\text{.28}}}}{{{\text{4}}{\text{.24}}}}{{ \times 100 = 6}}{\text{.60}}$
भार के लिए ${\text{n = 50}}$
$\sum\limits_{{\text{i = 1}}}^{{\text{50}}} {{{\text{y}}_{\text{i}}}} {\text{ = 261 , }}\sum\limits_{{\text{i = 1}}}^{{\text{50}}} {{\text{y}}_{\text{i}}^{\text{2}}} {\text{ = 1457}}{\text{.6}}$
माध्य $\overline {\text{X}} {\text{ = }}\dfrac{{{\text{261}}}}{{{\text{50}}}}{\text{ = 5}}{\text{.22}}$
${{\sigma = }}\dfrac{{\text{1}}}{{\text{n}}}\sqrt {\left[ {{\text{n}}\sum {{\text{y}}_{\text{i}}^{\text{2}}} {\text{ - }}{{\left( {\sum {{{\text{y}}_{\text{i}}}} } \right)}^{\text{2}}}} \right]} {\text{ = }}\dfrac{{\text{1}}}{{{\text{50}}}}\sqrt {{{50 \times 1457}}{\text{.6 - 26}}{{\text{1}}^{\text{2}}}} {\text{ = }}\dfrac{{\text{1}}}{{{\text{50}}}}\sqrt {{\text{72880 - 68121}}} {\text{ = 1}}{\text{.38}}$
विचरण गुणांक ${\text{ = }}\dfrac{{{\sigma }}}{{\overline {\text{x}} }}{{ \times 100 = }}\dfrac{{{\text{1}}{\text{.38}}}}{{{\text{5}}{\text{.22}}}}{{ \times 100 = 26}}{\text{.44}}$
भार का विचरण गुणांक, लंबाई के विचरण गुणांक से अधिक है इसलिए भार के बंटन मे अधिक विचरण होगा।
प्रश्नावली A15
1. आठ प्रेक्षणों का माध्य तथा प्रसरण क्रमश: ${\text{9 ,}}\;{\text{9}}{\text{.25}}$ है। यदि इनमे से छ: प्रेक्षण ${\text{6, 7, 10, 12, 12, 13}}$ है तो शेष दो प्रेक्षण ज्ञात कीजिए।
उत्तर: मान लीजिए वे दो संखयाए ${\text{x, y}}$ है।
अतः संखयाए ${\text{6, 7, 10, 12, 12, 13, x, y}}$
माध्य ${{\bar{ x} = }}\dfrac{{{\text{6 + 7 + 10 + 12 + 12 + 13 + x + y}}}}{{\text{8}}}{\text{ = 9}}$
${\text{60 + x + y = 72}}$
${\text{x + y = 12}}$ ........(1)
प्रसरण ${{{\sigma }}^{\text{2}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}\left[ {{\text{n}}\sum {{\text{x}}_{\text{i}}^{\text{2}}} {\text{ - }}{{\left( {\sum {{{\text{x}}_{\text{i}}}} } \right)}^{\text{2}}}} \right]$
$\begin{align} \dfrac{{\sum {{{\text{x}}_{\text{i}}}} }}{{\text{8}}}{\text{ = 9}} \hfill \\ {\text{9}}{\text{.25 = }}\dfrac{{\text{1}}}{{{\text{64}}}}\left[ {{{8 \times }}\sum {{\text{x}}_{\text{i}}^{\text{2}}} {\text{ - }}{{\left( {\sum {\text{x}} {\text{i}}} \right)}^{\text{2}}}} \right] \hfill \\ \sum {{{\text{x}}_{\text{i}}}} {\text{ = 72}} \hfill \\ {{8 \times }}\sum {{\text{x}}_{\text{i}}^{\text{2}}} {\text{ = 9}}{\text{.25 \times 64 + 72 + 72}} \hfill \\ {\text{592 + 5184 = 5776}} \hfill \\ \sum {{\text{x}}_{\text{i}}^{\text{2}}} {\text{ = 722 = }}{{\text{6}}^{\text{2}}}{\text{ + }}{{\text{7}}^{\text{2}}}{\text{ + 1}}{{\text{0}}^{\text{2}}}{\text{ + 1}}{{\text{2}}^{\text{2}}}{\text{ + 1}}{{\text{2}}^{\text{2}}}{\text{ + 1}}{{\text{3}}^{\text{2}}}{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}} \hfill \\ {\text{722 = 36 + 49 + 100 + 144 + 144 + 169 + }}{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 642 + }}{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}} \hfill \\ {{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 722 - 642}} \hfill \\ \end{align} $
${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 80}}$ ........(2)
समीकरण (1) और (2) से
$\begin{align} {{\text{x}}^{\text{2}}}{\text{ + (12 - x}}{{\text{)}}^{\text{2}}}{\text{ = 80}} \hfill \\ {\text{2}}{{\text{x}}^{\text{2}}}{\text{ - 24x + 144 = 80}} \hfill \\ {{\text{x}}^{\text{2}}}{\text{ - 12x + 144 = 80}} \hfill \\ {{\text{x}}^{\text{2}}}{\text{ - 12x + 32 = 0}} \hfill \\ {\text{(x - 4)(x - 8) = 0}} \hfill \\ {\text{x = 4 , 8}} \hfill \\ {\text{y = 8 , 4}} \hfill \\ \end{align} $
अतः वे शेष दो प्रेक्षण ${\text{4 , 8}}$ है।
2. सात प्रेक्षणों का माध्य तथा प्रसरण क्रमश: ${\text{8, 16}}$ है। यदि इनमे से पाँच प्रेक्षण ${\text{2, 4, 10, 12, 14}}$ है तो दो प्रेक्षण ज्ञात कीजिए।
उत्तर: मान लीजिए वे दो संखयाए ${\text{x, y}}$ है।
अतः संखयाए ${\text{2, 4, 10, 12, 14, x, y}}$
माध्य ${{\bar {x} = 8 = }}\dfrac{{{\text{2 + 4 + 10 + 12 + 14 + x + y}}}}{{\text{7}}}$
${\text{56 = 42 + x + y}}$
${\text{x + y = 56 - 42 = 14}}$ ..........(1)
प्रसरण ${{{\sigma }}^{\text{2}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}\left[ {{\text{n}}\sum {{\text{x}}_{\text{1}}^{\text{2}}} {\text{ - }}{{\left( {\sum {{{\text{x}}_{\text{i}}}} } \right)}^{\text{2}}}} \right]$
$\begin{align} \left[ {{{\bar {x} = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} }}{{\text{n}}}{\text{ , }}\therefore {\text{ }}\sum {{{\text{x}}_{\text{i}}}} {{ = n\bar {x} = 7 \times 8 = 56}}} \right] \hfill \\ {{{\sigma }}^{\text{2}}}{{ = 16 = }}\dfrac{{\text{1}}}{{{\text{49}}}}\left[ {{{7 \times }}\sum {{\text{x}}_{\text{i}}^{\text{2}}} {\text{ - (56}}{{\text{)}}^{\text{2}}}} \right] \hfill \\ {\text{7}}\sum {{\text{x}}_{\text{i}}^{\text{2}}} {{ = 49 \times 16 + 56 \times 56}} \hfill \\ \sum {{\text{x}}_{\text{i}}^{\text{2}}} {{ = 7 \times 16 + 8 \times 56 = 560}} \hfill \\ {{\text{2}}^{\text{2}}}{\text{ + }}{{\text{4}}^{\text{2}}}{\text{ + 1}}{{\text{0}}^{\text{2}}}{\text{ + 1}}{{\text{2}}^{\text{2}}}{\text{ + 1}}{{\text{4}}^{\text{2}}}{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 560}} \hfill \\ {\text{460 + }}{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 560}} \hfill \\ \end{align} $
${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 560 - 460 = 100}}$ ........(2)
समीकरण (1) और (2) से
$\begin{align} {{\text{x}}^{\text{2}}}{\text{ + (14 - x}}{{\text{)}}^{\text{2}}}{\text{ = 100}} \hfill \\ {\text{2}}{{\text{x}}^{\text{2}}}{\text{ - 28x + 196 - 100 = 0}} \hfill \\ {{\text{x}}^{\text{2}}}{\text{ - 14x + 48 = 0}} \hfill \\ {\text{(x - 6)(x - 8) = 0}} \hfill \\ {\text{x = 6 , 8}} \hfill \\ {\text{y = 8 , 6}} \hfill \\ \end{align} $
अतः वे शेष दो प्रेक्षण ${\text{6 , 8}}$ है।
3. छ: परक्षणों का माध्य तथा मानक विचलन क्रमश: ${\text{8, 4}}$ है यदि प्रत्येक प्रेक्षण को तीन से गुणा कर दिया जाए तो परिणामी प्रेक्षणों का माध्य तथा मानक विचलन ज्ञात कीजिए।
उत्तर: $\overline {\text{x}} {\text{ = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} }}{{\text{n}}}$
${{\text{x}}_{\text{i}}}$ को ${\text{3}}{{\text{x}}_{\text{i}}}$ से बदलने पर
नया माध्य ${\text{ = }}\dfrac{{\sum {\text{3}} {{\text{x}}_{\text{i}}}}}{{\text{n}}}$
$\dfrac{{{\text{3}}\sum {{{\text{x}}_{\text{i}}}} }}{{\text{n}}}{{ = 3\bar {x}}}$
${{ = 3 \times 8 = 24}}$
मानक विचलन $\sqrt {\dfrac{{\sum {{{\left( {{{\text{x}}_{\text{i}}}{{ - \bar{ x}}}} \right)}^{\text{2}}}} }}{{\text{n}}}} {\text{ = 4}}$
नए बटन मे ${{\text{x}}_{\text{i}}}$ को ${\text{3}}{{\text{x}}_{\text{i}}}$ और ${{\bar{ x}}}$ को ${{3\bar{ x}}}$ से बदलने पर
नया मानक विचलन ${\text{ = }}\sqrt {\dfrac{{\sum {{{\left( {{\text{3}}{{\text{x}}_{\text{i}}}{{ - 3\bar {x}}}} \right)}^{\text{2}}}} }}{{\text{n}}}} $
$\begin{align} {\text{ = }}\sqrt {\dfrac{{{{\Sigma 9(}}{{\text{x}}_{\text{i}}}{{ - \bar{ x}}}{{\text{)}}^2}}}{{\text{n}}}} \hfill \\ {\text{ = }}\sqrt {\dfrac{{{{9\Sigma (}}{{\text{x}}_{\text{i}}}{{ - \bar {x}}}{{\text{)}}^2}}}{{\text{n}}}} \hfill \\ {\text{ = 3}}\sqrt {\dfrac{{\sum {{{\left( {{{\text{x}}_{\text{i}}}{{ - \bar{ x}}}} \right)}^{\text{2}}}} }}{{\text{n}}}} \hfill \\ {{ = 3 \times 4 = 12}} \hfill \\ \end{align} $
4. यदि ${\text{n}}$ प्रेक्षणों ${{\text{x}}_{\text{1}}}{\text{,}}{{\text{x}}_{\text{2}}}{{, \ldots \ldots \ldots \ldots ,}}{{\text{x}}_{\text{n}}}$ का माध्य ${{\bar{ x}}}$ तथा प्रसरण ${{\text{\sigma }}^{\text{2}}}$ है तो सिद्ध कीजिए कि प्रेक्षणों ${\text{a}}{{\text{x}}_{\text{1}}}{\text{,a}}{{\text{x}}_{\text{2}}}{{, \ldots \ldots ,a}}{{\text{x}}_{\text{n}}}$ का माध्य और प्रसरण क्रमश: ${{a\bar{ x}}}$ तथा ${{\text{a}}^{\text{2}}}{{\text{\sigma }}^{\text{2}}}{\text{ (a}} \ne {\text{0)}}$ है।
उत्तर: माध्य ${{\bar{ x} = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} }}{{\text{n}}}$
${{\text{x}}_{\text{i}}}$ को ${\text{a}}{{\text{x}}_{\text{i}}}$ से बदलने पर
नया बटन माध्य ${\text{ = }}\dfrac{{\sum {\text{a}} {{\text{x}}_{\text{i}}}}}{{\text{n}}}$
${\text{ = }}\dfrac{{{\text{a}}\sum {{{\text{x}}_{\text{i}}}} }}{{\text{n}}}{{ = a\bar{ x}}}$
प्रसरण ${{{\sigma }}^{\text{2}}}{\text{ = }}\dfrac{{\sum {{{\left( {{{\text{x}}_{{\text{i - }}}}{{\bar {x}}}} \right)}^{\text{2}}}} }}{{\text{n}}}$
${{\text{x}}_{\text{i}}}$ को ${\text{a}}{{\text{x}}_{\text{i}}}$ और ${{\bar {x}}}$ को ${{a\bar {x}}}$ से बदलने पर
नया प्रसरण ${\text{ = }}\dfrac{{\sum {{{\left( {{\text{a}}{{\text{x}}_{{\text{i - }}}}\overline {{\text{ax}}} } \right)}^{\text{2}}}} }}{{\text{n}}}$
$\begin{align} {\text{ = }}\dfrac{{\sum {{{\text{a}}^{\text{2}}}} {{\left( {{{\text{x}}_{\text{i}}}{{ - \bar {x}}}} \right)}^{\text{2}}}}}{{\text{n}}} \hfill \\ {\text{ = }}\dfrac{{{{\text{a}}^{\text{2}}}\sum {{{\left( {{{\text{x}}_{\text{i}}}{{ - \bar{ x}}}} \right)}^{\text{2}}}} }}{{\text{n}}} \hfill \\ {\text{ = }}{{\text{a}}^{\text{2}}}{{{\sigma }}^{\text{2}}} \hfill \\ \end{align} $
5. बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $10,\;2$ है। जाँच करने पर यह पाया गया की प्रेक्षण आठ गलत है। निम्र मे से प्रत्येक का सही माध्य तथा मानक विचलन ज्ञात कीजिए।
उत्तर: ${{\bar {x} = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} }}{{\text{n}}}$
${\text{10 = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} }}{{{\text{20}}}}$
$\sum {{{\text{x}}_{\text{i}}}} {{ = 10 \times 20 = 200}}$
मानक विचलन ${{\sigma = }}\dfrac{{\text{1}}}{{\text{n}}}\sqrt {{\text{n}}\sum {{\text{x}}_{\text{i}}^{\text{2}}} } {\text{ - }}\sqrt {{{\left( {\sum {{{\text{x}}_{\text{i}}}} } \right)}^{\text{2}}}} $
${\text{n\sigma = }}\sqrt {{\text{n}}\sum {{\text{x}}_{\text{1}}^{\text{2}}} } {\text{ - }}\sqrt {{{\left( {\sum {{{\text{x}}_{\text{i}}}} } \right)}^{\text{2}}}} $
${\text{n}}\sum {{\text{x}}_{\text{i}}^{\text{2}}} {\text{ = }}{{\text{n}}^{\text{2}}}{{{\sigma }}^{\text{2}}}{\text{ + }}{\left( {\sum {{{\text{x}}_{\text{i}}}} } \right)^{\text{2}}}$
$\sum {{\text{x}}_{\text{i}}^{\text{2}}} {{ = }}\dfrac{{{{\text{n}}^{\text{2}}}{{{\sigma }}^{\text{2}}}{\text{ + }}{{\left( {\sum {{{\text{x}}_{\text{i}}}} } \right)}^{\text{2}}}}}{{\text{n}}}$
(i) गलत प्रेक्षण हत्या दिया जाए।
उत्तर: (a) जब एक प्रेक्षण आठ को निकाल दिया।
नए प्रेक्षणों का योग ${\text{ = 200 - 18 = 192}}$
नया माध्य ${\text{ = }}\dfrac{{{\text{192}}}}{{{\text{19}}}}{\text{ = 10}}{\text{.11}}$
(b) $\sum {{\text{x}}_{\text{1}}^{\text{2}}} {\text{ = }}\dfrac{{{\text{2}}{{\text{0}}^{\text{2}}}{{ \times 4 + }}\left( {{\text{20}}{{\text{0}}^{\text{2}}}} \right)}}{{{\text{20}}}}$
$\left[ {\because \;\;\sum {{\text{ = }}} {\text{2 , }}\sum {{{\text{x}}_{\text{i}}}} {\text{ = 200}}} \right]$
${ = 80 + 10 \times 200 = 2080}$
नया $\sum {{\text{x}}_{\text{i}}^{\text{2}}} {\text{ = 2080 - }}{{\text{8}}^{\text{2}}}$
${\text{ = 2080 - 64 = 2016}}$
नया मानक विचलन
$\begin{align} {\text{ = }}\dfrac{{\text{1}}}{{{{19}}}}\sqrt {{{19 \times 2016 - (192}}{{\text{)}}^{\text{2}}}} \hfill \\ {{ = }}\dfrac{{\text{1}}}{{{{19}}}}{{ \times }}\sqrt {{\text{38304 - 36864}}} \hfill \\ {\text{ = }}\dfrac{{\text{1}}}{{{{19}}}}{{ \times }}\sqrt {{\text{1440}}} {\text{ = 1}}{\text{.997}} \hfill \\ \end{align} $
(ii) उसे बारह से बदल दिया जाए।
उत्तर: नया $\sum {{{\text{x}}_{\text{i}}}} {\text{ = 200 - 8 + 12 = 204}}$
नया माध्य ${{ = }}\dfrac{{{\text{204}}}}{{{\text{20}}}}{\text{ = 10}}{\text{.2}}$
$\sum {{\text{x}}_{\text{i}}^{\text{2}}} {\text{ = 2080}}$
नया $\sum {{\text{x}}_{\text{i}}^{\text{2}}} {{ = 2080 - 64 + 144 = 2160}}$
नया (ठीक) मानक विचलन
$\begin{align} {{ = }}\dfrac{{\text{1}}}{{{{20}}}}\sqrt {{{20 \times 2160 - (204}}{{\text{)}}^{\text{2}}}} \hfill \\ {\text{ = }}\dfrac{{\text{1}}}{{{\text{20}}}}\sqrt {{\text{43200 - 41616}}} \hfill \\ {\text{ = }}\dfrac{{\sqrt {{\text{1584}}} }}{{{\text{20}}}} \hfill \\ {\text{ = 1}}{\text{.99}} \hfill \\ \end{align} $
6. एक कक्षा के पचास छात्रों द्वारा तीन विषयों गणित, भोतीक शस्त्र व रसयान शस्त्र मे प्राप्तांकों का माध्य तथा मानक विचलन नीचे दिए गए है।
विषय रसयान | गणित | भोतीक |
माध्य 40.9 | 42 | 32 |
मानक विचलन 20 | 12 | 15 |
किस विषय मे सबसे अधिक विचलन है तथा किसमे सबसे कम विचलन है।
उत्तर: गणित विषय मे मानक विचलन = ${\text{12}}$
भोतीक विषय मे मानक विचलन = ${\text{15}}$
रसायन विषय मे मानक विचलन = ${\text{20}}$
विचरण गुणाक = $\dfrac{{{\sigma }}}{{\text{x}}}{{ \times 100}}$
गणित विषय मे विचरण गुणाक = $\dfrac{{{\text{12}}}}{{{\text{42}}}}{{ \times 100 = 28}}{\text{.57}}$
भोतीक विषय मे विचरण गुणाक = $\dfrac{{{\text{15}}}}{{{\text{32}}}}{{ \times 100 = 46}}{\text{.875}}$
रसायन विषय मे विचरण गुणाक = $\dfrac{{{\text{20}}}}{{{\text{40}}{\text{.9}}}}{{ \times 100 = 48}}{\text{.9}}$
अतः रसायन विषय मे सबसे अधिक विचलन है तथा गणित विषय मे सबसे कम विचलन है।
7. $100$ प्रेक्षणों का माध्य और मानक विचलन क्रमश: $20,\;3$ है। बाद मे यह पाया गया की तीन प्रेक्षण ${\text{21, 21, 18}}$ गलत थे। यदि गलत प्रेक्षणों को हटा दिया जाए तो माध्य तथा मानक विचलन ज्ञात कीजिए।
उत्तर: ${{\bar {x} = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} }}{{\text{n}}}$
$\sum {{{\text{x}}_{\text{i}}}} {{ = n\bar{ x}}}$
${{ = 100 \times 20 = 2000}}$
नया $\sum {{{\text{x}}_{\text{i}}}} {\text{ = 2000 - 21 - 21 - 18 = 1940}}$
नया (ठीक) माध्य ${\text{ = }}\dfrac{{{\text{1940}}}}{{{\text{97}}}}{\text{ = 20}}$
$\begin{align} {{\sigma = }}\dfrac{{\text{1}}}{{\text{n}}}\sqrt {{\text{n}}\sum {{\text{x}}_{\text{i}}^{\text{2}}} } {\text{ - }}\sqrt {{{\left( {\sum {{{\text{x}}_{\text{i}}}} } \right)}^{\text{2}}}} \hfill \\ \sum {{\text{x}}_{\text{i}}^{\text{2}}} {\text{ = }}\dfrac{{{{\text{n}}^{\text{2}}}{{{\sigma }}^{\text{2}}}{\text{ + }}{{\left( {\sum {{{\text{x}}_{\text{i}}}} } \right)}^{\text{2}}}}}{{\text{n}}}{\text{ = }}\dfrac{{{\text{10}}{{\text{0}}^{\text{2}}}{{ \times 9 + (2000}}{{\text{)}}^{\text{2}}}}}{{{\text{100}}}} \hfill \\ {{ = 900 + 20 \times 2000 = 900 + 40000}} \hfill \\ {\text{ = 40900}} \hfill \\ \end{align} $
$\sum {{\text{x}}_{\text{i}}^{\text{2}}} $ का ठीक मान
$\begin{align} {\text{ = 40900 - (21}}{{\text{)}}^{\text{2}}}{\text{ - (21}}{{\text{)}}^{\text{2}}}{\text{ - (81}}{{\text{)}}^{\text{2}}} \hfill \\ {\text{ = 40900 - 441 - 441 - 324}} \hfill \\ {\text{ = 39694}} \hfill \\ \end{align} $
ठीक मानक विचलन
$\begin{align} {{ = }}\dfrac{{\text{1}}}{{{\text{97}}}}\sqrt {{{97 \times 39634 - (1940}}{{\text{)}}^{\text{2}}}} \hfill \\ {\text{ = }}\dfrac{{\text{1}}}{{{\text{97}}}}\sqrt {{\text{3850318 - 3763600}}} \hfill \\ {\text{ = }}\dfrac{{\text{1}}}{{{\text{97}}}}{{ \times }}\sqrt {{\text{86718}}} \hfill \\ \end{align} $
नया (ठीक) मानक विचलन = ${\text{3}}{\text{.036}}$
NCERT Solutions for Class 11 Maths Chapter 15 Statistics in Hindi
Chapter-wise NCERT Solutions are provided everywhere on the internet with an aim to help the students to gain a comprehensive understanding. Class 11 Maths Chapter 15 solution Hindi mediums are created by our in-house experts keeping the understanding ability of all types of candidates in mind. NCERT textbooks and solutions are built to give a strong foundation to every concept. These NCERT Solutions for Class 11 Maths Chapter 15 in Hindi ensure a smooth understanding of all the concepts including the advanced concepts covered in the textbook.
NCERT Solutions for Class 11 Maths Chapter 15 in Hindi medium PDF download are easily available on our official website (vedantu.com). Upon visiting the website, you have to register on the website with your phone number and email address. Then you will be able to download all the study materials of your preference in a click. You can also download the Class 11 Maths Statistics solution Hindi medium from Vedantu app as well by following the similar procedures, but you have to download the app from Google play store before doing that.
NCERT Solutions in Hindi medium have been created keeping those students in mind who are studying in a Hindi medium school. These NCERT Solutions for Class 11 Maths Statistics in Hindi medium pdf download have innumerable benefits as these are created in simple and easy-to-understand language. The best feature of these solutions is a free download option. Students of Class 11 can download these solutions at any time as per their convenience for self-study purpose.
These solutions are nothing but a compilation of all the answers to the questions of the textbook exercises. The answers/ solutions are given in a stepwise format and very well researched by the subject matter experts who have relevant experience in this field. Relevant diagrams, graphs, illustrations are provided along with the answers wherever required. In nutshell, NCERT Solutions for Class 11 Maths in Hindi come really handy in exam preparation and quick revision as well prior to the final examinations.
FAQs on NCERT Solutions For Class 11 Maths Chapter 15 Statistics in Hindi - 2025-26
1. How do Vedantu's NCERT Solutions for Class 11 Maths Chapter 15 help if I find Statistics difficult?
If you find Statistics challenging, our NCERT Solutions can be a great help. They break down every problem from the textbook into simple, easy-to-follow steps. Our subject matter experts focus on explaining the correct application of formulas for mean deviation, variance, and standard deviation. By following the detailed methodology, you can build a strong conceptual foundation and gain the confidence to solve any question correctly.
2. What is the correct step-by-step method to solve questions on variance and standard deviation for grouped data in Chapter 15?
The NCERT Solutions provide a precise method, as per the CBSE 2025-26 syllabus, for calculating variance and standard deviation for grouped data. The typical steps are:
Step 1: Create a frequency distribution table with class intervals, frequencies (fi), and class marks (xi).
Step 2: Calculate the mean (x̄) of the data using the formula x̄ = (Σfixi) / (Σfi).
Step 3: Find the deviation of each class mark from the mean (xi - x̄).
Step 4: Square these deviations (xi - x̄)², and then multiply by the corresponding frequency fi(xi - x̄)².
Step 5: Calculate the variance (σ²) by summing these values and dividing by the total frequency: σ² = (1/N) Σfi(xi - x̄)², where N = Σfi.
Step 6: The standard deviation (σ) is the positive square root of the variance.
3. Do these NCERT Solutions cover the Miscellaneous Exercise for Class 11 Maths Chapter 15?
Yes, our NCERT Solutions for Class 11 Maths Chapter 15 are comprehensive and include detailed, step-by-step answers for all questions in every exercise, including the Miscellaneous Exercise. This ensures that you have complete coverage of the chapter and are well-prepared for your exams, as questions from this section are often considered important.
4. Why is it important to square the deviations when calculating variance, instead of just taking their absolute values like in mean deviation?
Squaring the deviations from the mean is a crucial step in calculating variance for two main reasons. Firstly, it ensures all deviations become positive, preventing positive and negative deviations from cancelling each other out. Secondly, squaring gives more weight to larger deviations, making the variance a more sensitive measure of data dispersion. While mean deviation uses absolute values to solve the cancellation problem, variance is preferred in higher-level statistics because it has better mathematical properties, making it foundational for more advanced concepts.
5. What is a common mistake to avoid when solving problems on mean deviation about the median?
A common mistake is incorrectly calculating the median for grouped data, which then leads to errors in all subsequent steps. Students often misidentify the median class or use the wrong values in the median formula. Our NCERT Solutions clearly demonstrate how to first find the cumulative frequency, identify the correct median class, and then apply the formula M = l + [((N/2) - C) / f] * h with proper values. Following this structured approach helps prevent this initial, critical error.
6. How do the NCERT Solutions explain the analysis of frequency distributions that have the same mean but different variances?
The solutions explain this concept by demonstrating that variance is a measure of consistency. When comparing two datasets with the same mean:
The distribution with the smaller variance (or standard deviation) has data points that are more closely clustered around the mean. This indicates greater consistency or uniformity.
The distribution with the larger variance has data points that are more spread out from the mean, indicating less consistency.
7. Can I find the correct method for solving problems using the shortcut (assumed mean) method in these solutions?
Yes, the Vedantu NCERT Solutions for Chapter 15 provide detailed explanations for the shortcut method (or assumed mean method) for calculating mean and variance. This method is particularly useful for data with large numerical values, as it simplifies calculations. The solutions provide clear, tabular steps showing how to choose an assumed mean (A), calculate deviations (di), and apply the correct formulas to find the final answer accurately and efficiently.











