Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 11 Maths Chapter 8 Sequences And Series Ex 8.2

ffImage
banner

NCERT Solutions for Maths Class 11 Maths Chapter 8 Exercise 8.2 - FREE PDF Download

Class 11 Maths Chapter 8 Exercise 8.2 is designed to help you understand the properties and formulas related to arithmetic sequences, which are a fundamental concept in mathematics. In this exercise, you will learn how to identify an arithmetic progression, find the common difference, and calculate the nth term of an AP. Additionally, students will practice finding the sum of the first n terms of an arithmetic sequence in exercise 8.2 class 11 maths chapter 8 solutions pdf. These skills are essential for solving problems related to sequences and series, which have applications in various fields, including finance, computer science, and physics. Students can download the revised Class 11 Maths NCERT Solutions from our page which is prepared so that you can understand it easily.

toc-symbolTable of Content
toggle-arrow


These solutions are aligned with the updated CBSE guidelines for Class 11, ensuring students are well-prepared for exams. Access the Class 11 Maths Syllabus here.


Formulas Used in Class 11 Chapter 8 Exercise 8.2 

  • nth term: $Tn = a r^{n-1}$

  • Sum of n terms:  $Sn = a (1 - r^n) / (1 - r)$

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 11 Chapter 8 - Sequences and Series

Exercise 8.2

1. Find the $\mathbf{2}{{\mathbf{0}}^{\mathbf{th}}}$ and ${{\mathbf{n}}^{\mathbf{th}}}$ terms of the G.P. $\dfrac{\mathbf{5}}{\mathbf{2}}\mathbf{,}\dfrac{\mathbf{5}}{\mathbf{4}}\mathbf{,}\dfrac{\mathbf{5}}{\mathbf{8}}\mathbf{,}...$.

Ans:

The G.P. is provided as $\dfrac{\text{5}}{\text{2}}\text{,}\dfrac{\text{5}}{\text{4}}\text{,}\dfrac{\text{5}}{\text{8}}\text{,}...$.

Clearly, $a=\dfrac{5}{2}$ is the first term and $r=\dfrac{\dfrac{5}{4}}{\dfrac{5}{2}}=\dfrac{1}{2}$ is the common ratio of the G.P.

Therefore, the ${{20}^{th}}$ term of the G.P. is

$\begin{align}   & {{a}_{20}}=a{{r}^{20-1}} \\  & =\dfrac{5}{2}{{\left( \dfrac{1}{2} \right)}^{19}} \\   & =\dfrac{5}{2\times {{2}^{19}}} \\   & =\dfrac{5}{{{2}^{20}}}. \\ \end{align}$ 

Also, the ${{n}^{th}}$ term of the G.P. is 

$\begin{align}   & {{a}_{n}}=a{{r}^{n-1}} \\  & =\dfrac{5}{2}{{\left( \dfrac{1}{2} \right)}^{n-1}} \\  & =\dfrac{5}{2\cdot {{2}^{n-1}}} \\  & =\dfrac{5}{{{2}^{n}}}. \\ \end{align}$

Hence, the ${{20}^{th}}$ and ${{n}^{th}}$ terms of the G.P. are respectively $\dfrac{5}{{{2}^{20}}}$ and $\dfrac{5}{{{2}^{n}}}$.


2. Find the $\mathbf{1}{{\mathbf{2}}^{\mathbf{th}}}$ term of the G.P. whose ${{\mathbf{8}}^{\mathbf{th}}}$ term is $\mathbf{192}$ and the common ratio is $\mathbf{2}$.

Ans:

The G.P. described in the problem has the common ratio $r=2$.

Suppose that the first term of the G.P. is $a$.

Then, the ${{8}^{th}}$ term of the G.P. is given by

${{a}_{8}}=a{{r}^{8-1}}$$=a{{r}^{7}}$

$\Rightarrow a{{r}^{7}}=192$

$\Rightarrow a{{\left( 2 \right)}^{7}}=192$

$\Rightarrow a{{\left( 2 \right)}^{7}}={{\left( 2 \right)}^{6}}\times 3$

$\Rightarrow a=\dfrac{{{2}^{6}}\times 3}{{{2}^{7}}}=\dfrac{3}{2}$.

Thus, the ${{12}^{th}}$ term,

$\begin{align}   & {{a}_{12}}=a{{r}^{12-1}} \\  & =a{{r}^{11}} \\  & =\dfrac{3}{2}{{\left( 2 \right)}^{11}} \\  & =3{{\left( 2 \right)}^{10}} \\  & =3072. \\ \end{align}$

Hence, the ${{12}^{th}}$ term of the G.P. is $3072$.


3. The ${{\mathbf{5}}^{\mathbf{th}}}\mathbf{,}\,{{\mathbf{8}}^{\mathbf{th}}}\mathbf{,}$ and $\mathbf{1}{{\mathbf{1}}^{\mathbf{th}}}$ terms of a G.P. are $\mathbf{p,}\,\,\mathbf{q,}$ and $\mathbf{s}$ respectively. Show that ${{\mathbf{q}}^{\mathbf{2}}}\mathbf{=ps}$.

Ans:

Suppose that $a$ and $r$ are the first term and the common ratio of the given G.P. Then, by the condition provided to us,

the ${{5}^{th}}$ term of G.P.,

${{a}_{5}}=a{{r}^{5-1}}=a{{r}^{4}}=p$                                  …… (i)

The ${{8}^{th}}$ term of the G.P.,

${{a}_{8}}=a{{r}^{8-1}}=a{{r}^{7}}=q$                                  …… (ii)

Also, the ${{11}^{th}}$  term of the G.P.,

${{a}_{11}}=a{{r}^{11-1}}=a{{r}^{10}}=s$                                …… (iii)

Now, divide the equation (ii) by the equation (i). Then, it gives

$\dfrac{a{{r}^{7}}}{a{{r}^{4}}}=\dfrac{q}{p}$

$\Rightarrow {{r}^{3}}=\dfrac{q}{p}$                                               …… (iv)

Again, divide the equation (iii) by the equation (ii). Then, we have

$\dfrac{a{{r}^{10}}}{a{{r}^{7}}}=\dfrac{s}{q}$

$\Rightarrow {{r}^{3}}=\dfrac{s}{q}$                                           …… (v)

Therefore, from the equation (iv) and (v) gives

$\dfrac{q}{p}=\dfrac{s}{q}$

$\Rightarrow {{q}^{2}}=ps$.

Hence, the required result has been shown.


4. The ${{\mathbf{4}}^{\mathbf{th}}}$ term of a G.P. is a square of its second term, and the first term is $\mathbf{-3}$. Determine its ${{\mathbf{7}}^{\mathbf{th}}}$ term.

Ans:

Suppose that $r$ is the common ratio of the G.P.

It is given that the first term $a=-3$.

Now, by the formula, ${{n}^{th}}$ term of a G.P.,
${{a}_{n}}=a{{r}^{n-1}}$.

Therefore,

${{a}_{4}}=a{{r}^{3}}=\left( -3 \right){{r}^{3}}$ and ${{a}_{2}}=a{{r}^{1}}=\left( -3 \right)r$.

So, by the condition provided to us,

$\left( -3 \right){{r}^{3}}={{\left[ \left( -3 \right)r \right]}^{2}}$

$\Rightarrow -3{{r}^{3}}=9{{r}^{2}}$

$\Rightarrow r=-3$.

Thus, the ${{7}^{th}}$ term of the G.P. is given by

$\begin{align}   & {{a}_{7}}=\left( -3 \right){{\left( -3 \right)}^{7-1}} \\  & ={{\left( -3 \right)}^{7}} \\  & =-2187.  \end{align}$

Hence, the ${{7}^{th}}$ term of the geometric progression is $-2187$.


5. Which term of the following sequences:

(a) $\mathbf{2,2}\sqrt{\mathbf{2}}\mathbf{,4,}...$ is $\mathbf{128}$?

Ans:

The sequence provided to us is in a G.P. since the first term is $a=2$ and the common ratio is $r=\dfrac{2\sqrt{2}}{2}=\sqrt{2}$.

So, suppose that the ${{n}^{th}}$ term of the G.P. is $128$.

Therefore, we have

$2{{\left( \sqrt{2} \right)}^{n-1}}=128$

$\Rightarrow {{2}^{\dfrac{n-1}{2}+1}}={{2}^{7}}$

$\Rightarrow \dfrac{n-1}{2}+1=7$

$\Rightarrow \dfrac{n+1}{2}=6$

$\Rightarrow n+1=12$

$\Rightarrow n=11$.

Hence, $128$ is the ${{11}^{th}}$ term of the G.P. (sequence) $\text{2,2}\sqrt{\text{2}}\text{,4,}...$.


(b) $\sqrt{\mathbf{3}}\mathbf{,3,3}\sqrt{\mathbf{3}}\mathbf{,}...$ is $\mathbf{729}$?

Ans:

The sequence provided to us is in a G.P. since the first term is $a=\sqrt{3}$, and the common ratio is $r=\dfrac{3}{\sqrt{3}}=\sqrt{3}$.

Now, suppose that the ${{n}^{th}}$ term of the G.P. is $729$.

Therefore, we have

$a{{r}^{n-1}}=729$

$\Rightarrow \left( \sqrt{3} \right){{\left( \sqrt{3} \right)}^{\cdot n-1}}=729$

$\Rightarrow {{3}^{\dfrac{1}{2}+\dfrac{n-1}{2}}}={{3}^{6}}$

$\Rightarrow \dfrac{1}{2}+\dfrac{n-1}{2}=6$

$\Rightarrow \dfrac{1+n-1}{2}=6$

$\Rightarrow n=12$.

Hence, $729$ is the ${{n}^{th}}$ term of the geometric progression (sequence) $\sqrt{\text{3}}\text{,3,3}\sqrt{\text{3}}\text{,}...$.


(c) $\dfrac{\mathbf{1}}{\mathbf{3}}\mathbf{,}\dfrac{\mathbf{1}}{\mathbf{9}}\mathbf{,}\dfrac{\mathbf{1}}{\mathbf{27}}\mathbf{,}...$ is $\dfrac{\mathbf{1}}{\mathbf{19683}}$?

Ans:

The sequence given to us is in a geometric progression (G.P.) since the first term of it is $a=\dfrac{1}{3}$ and the common ratio is

$r=\dfrac{\dfrac{1}{9}}{\dfrac{1}{3}}=\dfrac{1}{3}$.

Now, suppose that $\dfrac{1}{19683}$ is the ${{n}^{th}}$ term of the G.P.

Therefore, we have

$a{{r}^{n-1}}=\dfrac{1}{19683}$

$\Rightarrow \dfrac{1}{3}{{\left( \dfrac{1}{3} \right)}^{n-1}}=\dfrac{1}{19683}$

$\Rightarrow {{\left( \dfrac{1}{3} \right)}^{n}}={{\left( \dfrac{1}{3} \right)}^{9}}$

$\Rightarrow n=9$.

Hence, $\dfrac{1}{19683}$ is the ${{9}^{th}}$ term of the G.P. (sequence) $\dfrac{\text{1}}{\text{3}}\text{,}\dfrac{\text{1}}{\text{9}}\text{,}\dfrac{\text{1}}{\text{27}}\text{,}...$.


6. For what values of $\mathbf{x}$, the numbers $\mathbf{-}\dfrac{\mathbf{2}}{\mathbf{7}}\mathbf{,}\,\,\mathbf{x,}\,\,\mathbf{-}\dfrac{\mathbf{7}}{\mathbf{2}}$ are in G.P.?

Ans:

The numbers provided to us are $-\dfrac{2}{7},\,x,\,-\dfrac{7}{2}$.

Now, let ${{a}_{1}}=-\dfrac{2}{7}$, ${{a}_{2}}=x$ and ${{a}_{3}}=-\dfrac{7}{2}$.

Then, $\dfrac{{{a}_{2}}}{{{a}_{1}}}=\dfrac{x}{-\dfrac{2}{7}}=\dfrac{-7x}{2}$ and $\dfrac{{{a}_{3}}}{{{a}_{2}}}=\dfrac{-\dfrac{7}{2}}{x}=-\dfrac{7}{2x}$.

Now, if the numbers are in G.P., then

$r=\dfrac{{{a}_{2}}}{{{a}_{1}}}=\dfrac{{{a}_{3}}}{{{a}_{2}}}$

$\Rightarrow \dfrac{-7x}{2}=-\dfrac{7}{2x}$

$\Rightarrow {{x}^{2}}=\dfrac{-2\times 7}{-2\times 7}=1$

$\Rightarrow x=\sqrt{1}$

$\Rightarrow x=\pm 1$.

Hence, the numbers $-\dfrac{2}{7},\,x,\,-\dfrac{7}{2}$  are in G.P. if $x=\pm 1$.


7. Find the sum of the numbers $\mathbf{0}\mathbf{.15,}\,\,\mathbf{0}\mathbf{.015,}\,\,\mathbf{0}\mathbf{.0015,}\,...$ in the G.P. up to $\mathbf{20}$ terms.

Ans:

It is provided that the numbers $\text{0}\text{.15,}\,\,\text{0}\text{.015,}\,\,\text{0}\text{.0015,}\,...$are in geometric progression.

Note that, the first term of the sequence is $a=0.15$ and the common ratio is $r=\dfrac{0.015}{0.15}=0.1$

Now, by the formula, sum of $n$ terms in G.P., we have

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$

Therefore,

${{S}_{20}}=\dfrac{0.15\left[ 1-{{\left( 0.1 \right)}^{20}} \right]}{1-0.1}$

$=\dfrac{0.15}{0.9}\left[ 1-{{\left( 0.1 \right)}^{20}} \right]$

$=\dfrac{15}{90}\left[ 1-{{\left( 0.1 \right)}^{20}} \right]$

$=\dfrac{1}{6}\left[ 1-{{\left( 0.1 \right)}^{20}} \right]$.


8. Find the sum of the numbers $\sqrt{\mathbf{7}}\mathbf{,}\sqrt{\mathbf{21}}\mathbf{,3}\sqrt{\mathbf{7}}\mathbf{,}...$ in the G.P. up to $\mathbf{n}$ terms.

Ans:

It is provided to us that the numbers $\sqrt{7},\sqrt{21},3\sqrt{7},...$ are in geometric progression.

Note that, the first term of the G.P. is $a=\sqrt{7}$ and the common ratio is $r=\dfrac{\sqrt{21}}{\sqrt{7}}=\sqrt{3}$.

Now, by the formula, sum of the first $n$ terms in G.P.,

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$

$\begin{align}   & =\dfrac{\sqrt{7}\left[ 1-{{\left( \sqrt{3} \right)}^{n}} \right]}{1-\sqrt{3}} \\  & =\dfrac{\sqrt{7}\left[ 1-{{\left( \sqrt{3} \right)}^{n}} \right]}{1-\sqrt{3}}\cdot \dfrac{1+\sqrt{3}}{1+\sqrt{3}} \\  & =\dfrac{\sqrt{7}\left[ 1-{{\left( \sqrt{3} \right)}^{n}} \right]\left( 1+\sqrt{3} \right)}{1-3} \\  & =\dfrac{-\sqrt{7}\left( \sqrt{3}+1 \right)\left[ 1-{{\left( \sqrt{3} \right)}^{n}} \right]}{2} \\ \end{align}$

Hence, the sum of the first $n$ terms is given by

${{S}_{n}}=\dfrac{\sqrt{7}\left( 1+\sqrt{3} \right)}{2}\left[ {{\left( 3 \right)}^{\dfrac{n}{2}}}-1 \right]$.


9. Find the sum of the numbers $\mathbf{1,}\,\,\mathbf{-a,}\,\,{{\mathbf{a}}^{\mathbf{2}}}\mathbf{,}\,\mathbf{-}{{\mathbf{a}}^{\mathbf{3}}}\mathbf{,}...$ (if $\mathbf{a}\ne \mathbf{-1}$) in geometric progression up to $\mathbf{n}$ terms.

Ans:

The numbers $1,-a,{{a}^{2}},-{{a}^{3}},...$ provided to us, is in G.P. with the first term $a=1$ and the common ratio $r=\dfrac{-a}{1}=-a$.

Now, by the formula, sum of the first $n$ terms in G.P.,

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$

$=\dfrac{1\left[ 1-{{\left( -a \right)}^{n}} \right]}{1-\left( -a \right)}$

Hence, the sum of $n$ terms of the sequence is given by

${{S}_{n}}=\dfrac{\left[ 1-{{\left( -a \right)}^{n}} \right]}{1+a}$.


10. Find the sum of the numbers ${{\mathbf{x}}^{\mathbf{3}}}\mathbf{,}{{\mathbf{x}}^{\mathbf{5}}}\mathbf{,}{{\mathbf{x}}^{\mathbf{7}}}\mathbf{,}...$(if $\mathbf{x}\ne \mathbf{\pm 1}$) in the geometric progression up to $\mathbf{n}$ terms.

Ans:

The numbers ${{x}^{3}},\,{{x}^{5}},\,{{x}^{7}},...$ are in G.P. with its first term $a={{x}^{3}}$ and the common ratio $r=\dfrac{{{x}^{5}}}{{{x}^{3}}}={{x}^{2}}$.

Therefore, by the formula, sum of the first $n$ terms in G.P.,

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$

$=\dfrac{{{x}^{3}}\left[ 1-{{\left( {{x}^{2}} \right)}^{n}} \right]}{1-{{x}^{2}}}$

$=\dfrac{{{x}^{3}}\left( 1-{{x}^{2n}} \right)}{1-{{x}^{2}}}$.

Hence, the sum of the first $n$ terms of the sequence ${{\text{x}}^{\text{3}}}\text{,}{{\text{x}}^{\text{5}}}\text{,}{{\text{x}}^{\text{7}}}\text{,}...$ is given by  ${{S}_{n}}=\dfrac{{{x}^{3}}\left( 1-{{x}^{2n}} \right)}{1-{{x}^{2}}}$.


11. Evaluate $\sum\limits_{\mathbf{k=1}}^{\mathbf{11}}{\left( \mathbf{2+}{{\mathbf{3}}^{\mathbf{k}}} \right)}$.

Ans:

The given sum can be written as

$\sum\limits_{\text{k=1}}^{\text{11}}{\left( \text{2+}{{\text{3}}^{\text{k}}} \right)}=\sum\limits_{k=1}^{11}{2}+\sum\limits_{\text{k=1}}^{\text{11}}{{{\text{3}}^{\text{k}}}}=22+\sum\limits_{\text{k=1}}^{\text{11}}{{{\text{3}}^{\text{k}}}}$                    …… (i)

Again, $\sum\limits_{\mathbf{k=1}}^{\mathbf{11}}{{{3}^{k}}}={{3}^{1}}+{{3}^{2}}+{{3}^{3}}+\cdot \cdot \cdot +{{3}^{11}}$, which is in a geometric progression with the first term $a=3$ and the common ratio $r=3$.

Therefore, we have

${{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$

$\Rightarrow {{S}_{n}}=\dfrac{3\left[ {{3}^{11}}-1 \right]}{3-1}$

$\Rightarrow {{S}_{n}}=\dfrac{3}{2}\left( {{3}^{11}}-1 \right)$

Thus,

$\sum\limits_{k=1}^{11}{{{3}^{k}}}=\dfrac{3}{2}\left( {{3}^{11}}-1 \right)$.                                                 …… (ii)

Hence, from the equation (i) and (ii), it gives

$\sum\limits_{\text{k=1}}^{\text{11}}{\left( \text{2+}{{\text{3}}^{\text{k}}} \right)}=22+\dfrac{3}{2}\left( {{3}^{11}}-1 \right)$.


12. The sum of the first three terms of a G.P. is $\dfrac{\mathbf{39}}{\mathbf{10}}$ and their product is $\mathbf{1}$. Find the common ratio and the terms.

Ans:

Suppose that the first three terms of the geometric progression are $\dfrac{a}{r},\,\,a,\,\,ar$.

Now, by the given conditions,

$\dfrac{a}{r}+a+ar=\dfrac{39}{10}$                                        …… (i)

$\left( \dfrac{a}{r} \right)\cdot \left( a \right)\cdot \left( ar \right)=1$                                    …… (ii)

Simplifying the equation (ii) gives

${{a}^{3}}=1$

$\Rightarrow a=1$, neglecting the imaginary roots.

Thus, replacing $a$ by $1$ in the equation (i) gives

$\dfrac{1}{r}+1+r=\dfrac{39}{10}$

$\Rightarrow 1+r+{{r}^{2}}=\dfrac{39}{10}r$

$\Rightarrow 10+10r+10{{r}^{2}}-39r=0$

$\Rightarrow 10{{r}^{2}}-29r+10=0$

$\Rightarrow 10{{r}^{2}}-25r-4r+10=0$

$\Rightarrow \left( 5r-2 \right)\left( 2r-5 \right)=0$

$\Rightarrow r=\dfrac{2}{5}$ or $\dfrac{5}{2}$.

Hence, $\dfrac{5}{2},$ $1$, and $\dfrac{2}{5}$ are the three terms of the geometric progression.


13. How many terms of G.P. $\mathbf{3},\,{{\mathbf{3}}^{\mathbf{2}}},\,{{\mathbf{3}}^{\mathbf{3}}},...$ are needed to give the sum $\mathbf{120}$.

Ans:

It is provided that the terms $\text{3,}\,{{\text{3}}^{\text{2}}}\text{,}\,{{\text{3}}^{\text{3}}}\text{,}...$ are geometric progression with the first term $a=3$ and the common ratio $r=3$.

Suppose that to get the sum of the G.P. as $120$, $n$ terms are needed to be considered.

So, by the formula, sum of $n$ terms in G.P.,

${{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$.

Therefore,

$\begin{align}  & \dfrac{3\left( {{3}^{n}}-1 \right)}{3-1}=120 \\  & \Rightarrow {{3}^{n}}-1=120\times \dfrac{2}{3} \\  & \Rightarrow {{3}^{n}}-1=80 \\  & \Rightarrow {{3}^{n}}=81 \\  & \Rightarrow {{3}^{n}}={{3}^{4}} \\ \end{align}$

$\Rightarrow n=4$.

Hence, to get the sum of $\text{3,}\,{{\text{3}}^{\text{2}}}\text{,}\,{{\text{3}}^{\text{3}}}\text{,}...$ as $120$, $4$ terms are needed to be considered.


14. The sum of the first three terms of a G.P. is $\mathbf{16}$ and the sum of the next three terms is $\mathbf{128}$. Determine the first term, the common ratio and the sum of $\mathbf{n}$ terms of the G.P.

Ans:

Suppose that the first six terms of the given geometric progression are

$a,\,ar,\,a{{r}^{2}},\,a{{r}^{3}},\,a{{r}^{4}},\,a{{r}^{5}}$.

Then, by the condition provided to us,

$a+ar+a{{r}^{2}}=16$              

 $\Rightarrow a\left( 1+r+{{r}^{3}} \right)=16$                                           …… (i)

and $a{{r}^{3}}+a{{r}^{4}}+a{{r}^{5}}=128$

$\Rightarrow a{{r}^{3}}\left( 1+r+{{r}^{2}} \right)=128$                                       …… (ii)

Now, divide the equation (ii) by the equation (i). Then, it gives

$\dfrac{a{{r}^{3}}\left( 1+r+{{r}^{2}} \right)}{a\left( 1+r+{{r}^{2}} \right)}=\dfrac{128}{16}$

$\begin{align}   & \Rightarrow {{r}^{3}}=8 \\  & \Rightarrow {{r}^{3}}={{2}^{3}} \\ \end{align}$

$\Rightarrow r=2$                                                            …… (iii)

Therefore, the equation (i) and (iii) together implies

$a\left( 1+2+{{2}^{2}} \right)=16$

$\begin{align}   & \Rightarrow a\times 7=16 \\  & \Rightarrow a=\dfrac{16}{7} \\ \end{align}$

Hence, the sum of $n$ terms of the G.P. is given by

${{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$

$=\dfrac{16}{7}\dfrac{\left( {{2}^{n}}-1 \right)}{2-1}$

$=\dfrac{16}{7}\left( {{2}^{n}}-1 \right)$.


15. Given a G.P. with $\mathbf{a}=\mathbf{729}$ and the ${{\mathbf{7}}^{\mathbf{th}}}$ term $\mathbf{64}$, determine ${{\mathbf{S}}_{\mathbf{7}}}$.

Ans:

The first term of the G.P. is $a=729$.

Suppose that $r$ is the common ratio of the geometric progression.

Therefore, by the formula, ${{n}^{th}}$ term of the sequence in G.P.,

${{a}_{n}}=a{{r}^{n-1}}$

So, ${{a}_{7}}=\left( 729 \right){{r}^{7-1}}=729\cdot {{r}^{6}}$

$\begin{align}   & \Rightarrow 64=729{{r}^{6}} \\  & \Rightarrow {{r}^{6}}={{\left( \dfrac{2}{3} \right)}^{6}} \\  & \Rightarrow r=\dfrac{2}{3}. \\ \end{align}$

Thus, by the formula, sum of $n$ terms in G.P.,

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$

Therefore, for $n=7$, we have

${{S}_{7}}=\dfrac{729\left[ 1-{{\left( \dfrac{2}{3} \right)}^{7}} \right]}{1-\dfrac{2}{3}}$

$={{3}^{7}}\times \dfrac{{{3}^{7}}-{{2}^{7}}}{{{3}^{7}}}$

$\begin{align}   & ={{3}^{7}}-{{2}^{7}} \\  & =2187-128 \\ \end{align}$

$=2059$.

Hence, ${{S}_{7}}=2059$.


16. Find a G.P. for which the sum of the first two terms is $-\mathbf{4}$ and the fifth term is $\mathbf{4}$ times the third term.

Ans:

Suppose that $a$ and $r$ respectively are the first term and the common ratio of the geometric progression.

So, by the condition provided to us,

$-4=\dfrac{a\left( 1-{{r}^{2}} \right)}{1-r}$                                                    …… (i)

${{a}_{5}}=4\times {{a}_{3}}$                                                          …… (ii)

Now, we know that, the ${{n}^{th}}$ term of a G.P.,

${{a}_{n}}=a{{r}^{n-1}}$.
Therefore, 

${{a}_{3}}=a{{r}^{3-1}}=a{{r}^{2}}$                                                   …… (iii)

and ${{a}_{5}}=a{{r}^{5-1}}=a{{r}^{4}}$.                                           …… (iv)

Thus, from the equation (ii), (iii), and (iv) we have

$a{{r}^{4}}=4\times a{{r}^{2}}$

$\Rightarrow {{r}^{2}}=4$

$\Rightarrow r=\pm 2$.

Substituting $r=2$ into the equation (i), it gives

$-4=\dfrac{a\left[ 1-{{\left( 2 \right)}^{2}} \right]}{1-2}$

$\Rightarrow -4=\dfrac{a\left( 1-4 \right)}{-1}$

$\Rightarrow -4=3a$

$\Rightarrow a=-\dfrac{4}{3}$.

Also, substituting $r=-2$ into the equation (i), gives

$-4=\dfrac{a\left[ 1-{{\left( -2 \right)}^{2}} \right]}{1-\left( -2 \right)}$

$\Rightarrow -4=\dfrac{a\left( 1-4 \right)}{1+2}$

$\Rightarrow -4=\dfrac{a\left( -3 \right)}{3}$

$\Rightarrow a=4$.

Hence, the G.P. can be of the form $-\dfrac{4}{3},-\dfrac{8}{3},-\dfrac{16}{3},...$ or $4,-8,-16,-32,...$


17. If the ${{\mathbf{4}}^{\mathbf{th}}}$ , $\mathbf{1}{{\mathbf{0}}^{\mathbf{th}}}$, and $\mathbf{1}{{\mathbf{6}}^{\mathbf{th}}}$ terms of a G.P. are $\mathbf{x,y}$ and $\mathbf{z}$, respectively. Prove that $\mathbf{x},\,\mathbf{y},$$\mathbf{z}$ are in G.P.

Ans:

Suppose that $a$ and $r$ respectively are the first term and common ratio of the geometric progression.

Then, by the condition provided to us,

${{a}_{4}}=a{{r}^{3}}=x$                                             …… (i)

${{a}_{10}}=a{{r}^{9}}=y$                                            …… (ii)

${{a}_{16}}=a{{r}^{15}}=z$                                           …… (iii)

Now, divide the equation (ii) by the equation (i). Then, it gives

$\dfrac{y}{x}=\dfrac{a{{r}^{9}}}{a{{r}^{3}}}$

$\Rightarrow \dfrac{y}{x}={{r}^{6}}$                                                  ……(iv)

Again, divide the equation (iii) by the equation (ii). Then, it gives

$\dfrac{z}{y}=\dfrac{a{{r}^{15}}}{a{{r}^{9}}}$

$\Rightarrow \dfrac{z}{y}={{r}^{6}}$                                                  ..,…. (v)

Equating the equations (iv) and (v), we have

$\dfrac{y}{x}=\dfrac{z}{y}$.

Hence, it has been proved that $x,y,z$ are in G.P.


18. Find the sum of $\mathbf{n}$ terms of the sequence $\mathbf{8},\,\mathbf{88},\,\mathbf{888},\,\mathbf{8888},...$.

Ans:

The provided sequence $\text{8,}\,\text{88,}\,\text{888,}\,\text{8888,}...$ is not in a geometric progression (G.P.), but by rearranging and rewriting the terms, it can be converted into a G.P.

The sum of the $n$ terms of the given sequence is given by

${{S}_{n}}=8+88+888+8888+\cdot \cdot \cdot \,\text{to n terms}$

$=\dfrac{8}{9}\left[ 9+99+999+9999+\cdot \cdot \cdot \,\text{to n terms} \right]$

$=\dfrac{8}{9}\left[ \left( 10-1 \right)+\left( {{10}^{2}}-1 \right)+\left( {{10}^{3}}-1 \right)+\left( {{10}^{4}}-1 \right)+\cdot \cdot \cdot \,\,\text{to n terms} \right]$

$=\dfrac{8}{9}\left[ \left( 10+{{10}^{2}}+\cdot \cdot \cdot +\,\,\text{n terms} \right)-\left( 1+1+1+\cdot \cdot \cdot \,\text{n terms} \right) \right]$

$\begin{align}   & =\dfrac{8}{9}\left[ \dfrac{10\left( {{10}^{n}}-1 \right)}{10-1}-n \right] \\  & =\dfrac{80}{81}\left( {{10}^{n}}-1 \right)-\dfrac{8}{9}n. \\  \end{align}$

Hence, the sum of $n$ terms of the sequence $\text{8,}\,\text{88,}\,\text{888,}\,\text{8888,}...$ is $\dfrac{80}{81}\left( {{10}^{n}}-1 \right)-\dfrac{8}{9}n$.


19. Find the sum of the products of the corresponding terms of the sequences $\mathbf{2},\,\mathbf{4},\,\mathbf{8},\,\mathbf{16},\,\mathbf{32}$ and $\mathbf{128},\,\mathbf{32},\,\mathbf{8},\,\mathbf{2},\,\dfrac{\mathbf{1}}{\mathbf{2}}$.

Ans:

The sum of the product of the corresponding terms $\text{2,}\,\text{4,}\,\text{8,}\,\text{16,}\,\text{32}$ and $\text{128,}\,\text{32,}\,\text{8,}\,\text{2,}\,\dfrac{\text{1}}{\text{2}}$, is given by

$=2\times 128+4\times 32+8\times 8+16\times 2+32\times \dfrac{1}{2}$

$=64\left[ 4+2+1+\dfrac{1}{2}+\dfrac{1}{{{2}^{2}}} \right]$.

Now, note that, the terms $4,\,2,\,1,\,\dfrac{1}{2},\,\dfrac{1}{{{2}^{2}}}$ are in geometric progression, with the first term $a=4$ and the common ratio $r=\dfrac{2}{4}=\dfrac{1}{2}$.

So, by the formula, sum of $n$ terms in G.P.,

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$, $r<1$.

Therefore,

$\begin{align}  & {{S}_{5}}=\dfrac{4\left[ 1-{{\left( \dfrac{1}{2} \right)}^{5}} \right]}{1-\dfrac{1}{2}} \\  & =\dfrac{4\left[ 1-\dfrac{1}{32} \right]}{\dfrac{1}{2}} \\  & =8\left( \dfrac{32-1}{32} \right) \\  & =\dfrac{31}{4}. \\ \end{align}$

Hence, the sum of the products of the corresponding terms of the given sequences is $\dfrac{31}{4}$.


20. Show that the products of the corresponding terms of the sequences $\mathbf{a,}\,\mathbf{ar,}\,\mathbf{a}{{\mathbf{r}}^{\mathbf{2}}}\mathbf{,}...\mathbf{,}\,\mathbf{a}{{\mathbf{r}}^{\mathbf{n-1}}}$ and $\mathbf{A},\,\mathbf{AR},\,\mathbf{A}{{\mathbf{R}}^{\mathbf{2}}},...,\,\mathbf{A}{{\mathbf{R}}^{\mathbf{n}-\mathbf{1}}}$ form a G.P. and find the common ratio.

Ans:

The product of the corresponding terms of the sequences $\text{a,}\,\text{ar,}\,\text{a}{{\text{r}}^{\text{2}}}\text{,}...\text{,}\,\text{a}{{\text{r}}^{\text{n-1}}}$ and $\text{A,}\,\text{AR,}\,\text{A}{{\text{R}}^{\text{2}}}\text{,}...\text{,}\,\text{A}{{\text{R}}^{\text{n-1}}}$ is $aA,\,arAR,\,a{{r}^{2}}A{{R}^{2}},...,a{{r}^{n-1}}A{{R}^{n-1}}$.

Now, we are to be proved that the product is in G.P.

So. $\dfrac{\text{Second term }}{\text{First term}}=\dfrac{arAR}{aA}=rR$                                  …… (i)

Also,

$\dfrac{\text{Third term}}{\text{Second term}}=\dfrac{a{{r}^{2}}A{{R}^{2}}}{arAR}=rR$                                      …… (ii)

Thus, by equating the equations (i) and (ii), we have

$\dfrac{\text{Second term }}{\text{First term}}=\dfrac{\text{Third term}}{\text{Second term}}$$=rR$, the common ratio.

Hence, it has been proved that the product of the corresponding terms of the sequences $\text{a,}\,\text{ar,}\,\text{a}{{\text{r}}^{\text{2}}}\text{,}...\text{,}\,\text{a}{{\text{r}}^{\text{n-1}}}$ and $\text{A,}\,\text{AR,}\,\text{A}{{\text{R}}^{\text{2}}}\text{,}...\text{,}\,\text{A}{{\text{R}}^{\text{n-1}}}$ is in G.P. with the common ratio $rR$.


21. Find four numbers forming a geometric progression in which the third term is greater than the first term by $\mathbf{9}$, and the second term is greater than the ${{\mathbf{4}}^{\mathbf{th}}}$ by $\mathbf{18}$.

Ans:

Suppose that the first term and the common ratio of the geometric progression respectively are $a$ and $r$.

Then the first four terms of the sequence are $a,\,ar,\,a{{r}^{2}},\,a{{r}^{3}}$.

Now, according to the condition provided,

$a{{r}^{2}}=a+9$                                                    …… (i)

$ar=a{{r}^{3}}+18$                                                 …… (ii)

Therefore, rewriting the equations, give

$a\left( {{r}^{2}}-1 \right)=9$                                                …… (iii)

$ar\left( 1-{{r}^{2}} \right)=18$                                              …… (iv)

Now, divide the equation (iv) by the equation (iii). Then, it gives

$\dfrac{ar\left( 1-{{r}^{2}} \right)}{-a\left( 1-{{r}^{2}} \right)}=\dfrac{18}{9}$

$\Rightarrow r=-2$                                                   …… (v)

Now, using the equation (v) into the equation (i) gives

$\begin{align}   & 4a=a+9 \\  & \Rightarrow 3a=9 \\  & \Rightarrow a=3 \\ \end{align}$

Hence, the first four numbers that forms a geometric progression are $3,\,3\left( -2 \right),\,3{{\left( -2 \right)}^{2}},$ and $3{{\left( -2 \right)}^{3}}$, that is $3,\,-6,\,\,12,\,$ and $-24$.


22. If the ${{\mathbf{p}}^{\mathbf{th}}}$ , ${{\mathbf{q}}^{\mathbf{th}}}$ and ${{\mathbf{r}}^{\mathbf{th}}}$ terms of a G.P. are $\mathbf{a},\,\mathbf{b},\,$ and $\mathbf{c}$ respectively. Prove that ${{\mathbf{a}}^{\mathbf{q-r}}}\,{{\mathbf{b}}^{\mathbf{r-p}}}\,{{\mathbf{c}}^{\mathbf{p-q}}}\mathbf{=1}$.

Ans:

First suppose that the first term and the common ratio of the geometric progression are respectively $A$ and $R$.

Then, by the condition provided to us,

$A{{R}^{p-1}}=a$,                                       …… (i)

$A{{R}^{q-1}}=b$,                                       …… (ii)

and $A{{R}^{r-1}}=c$.                                 …… (iii)

Therefore, we have

${{a}^{q-r}}{{b}^{r-p}}{{c}^{p-q}}$

$={{A}^{q-r}}\times {{R}^{\left( p-1 \right)\left( q-r \right)}}\times {{A}^{r-p}}\times {{R}^{\left( q-1 \right)\left( r-p \right)}}\times {{A}^{p-q}}\times {{R}^{\left( r-1 \right)\left( p-q \right)}}$, using the equations (i), (ii) and (iii).

$\begin{align}   & ={{A}^{q-r+r-p+p-q}}\times {{R}^{\left( pr-pr-q+r \right)\left( rq-r+p-pq \right)+\left( pr-p-qr+q \right)}} \\  & ={{A}^{0}}\times {{R}^{0}} \\  & =1. \\ \end{align}$

Hence, it has been proved that, ${{a}^{q-r}}{{b}^{r-p}}{{c}^{p-q}}=1$.


23. If the first and the ${{\mathbf{n}}^{\mathbf{th}}}$ term of a G.P. are $\mathbf{a}$ and $\mathbf{b}$, respectively, and if $\mathbf{P}$ is the product of $\mathbf{n}$ terms, prove that ${{\mathbf{P}}^{\mathbf{2}}}\mathbf{=}{{\left( \mathbf{ab} \right)}^{\mathbf{n}}}$.

Ans:

First suppose that, $r$ is the common ratio of the geometric progression.

Since, $a$ is the first of the G.P., so it takes the form $a,\,ar,\,a{{r}^{2}},a{{r}^{3}},...,a{{r}^{n-1}}$.

Therefore, by the given condition,

$b=a{{r}^{n-1}}$                                              …… (i)

Also, 

$P=$ Product of $n$ terms

$=\left( a \right)\left( ar \right)\left( a{{r}^{2}} \right)\cdot \cdot \cdot \left( a{{r}^{n-1}} \right)$

$=\left( a\times a\times a\times \cdot \cdot \cdot \times a \right)\left( r\times {{r}^{2}}\times \cdot \cdot \cdot \times {{r}^{n-1}} \right)$

$={{a}^{n}}{{r}^{1+2+\cdot \cdot \cdot +\left( n-1 \right)}}$                                      …… (ii)

Now, notice that the numbers $1,2,...,\left( n-1 \right)$ on the power of $r$ are in A.P.

So, the sum of the $n-1$ terms, 

$1+2+\cdot \cdot \cdot +\left( n-1 \right)=\dfrac{n-1}{2}\left[ 2+\left( n-1-1 \right)\times 1 \right]$

$\begin{align}   & =\dfrac{n-1}{2}\left[ 2+n-2 \right] \\  & =\dfrac{n\left( n-1 \right)}{2}. \\ \end{align}$

Thus, from the equation (ii) we have

$P={{a}^{n}}{{r}^{\dfrac{n\left( n-1 \right)}{2}}}$

$\begin{align}   & \Rightarrow {{P}^{2}}={{a}^{2n}}{{r}^{n\left( n-1 \right)}} \\  & ={{\left[ {{a}^{2}}{{r}^{\left( n-1 \right)}} \right]}^{n}} \\  & ={{\left( a\times a{{r}^{n-1}} \right)}^{n}} \\ \end{align}$

$={{\left( ab \right)}^{n}}$, applying the result of equation (i).

Hence, it has been proved that $P={{\left( ab \right)}^{n}}$.


24. Show that the ratio of the sum of first $\mathbf{n}$ terms of a G.P. to the sum of terms from ${{\left( \mathbf{n+1} \right)}^{\mathbf{th}}}$ to ${{\left( \mathbf{2n} \right)}^{\mathbf{th}}}$ term is $\dfrac{\mathbf{1}}{{{\mathbf{r}}^{\mathbf{n}}}}$.

Ans:

Suppose that $a$ and $r$ respectively are the first term and the common ratio of the geometric progression.

Therefore, by the formula, sum of the first $n$ terms of a G.P.,

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$.

Now, note that from ${{\left( \text{n+1} \right)}^{\text{th}}}$ to ${{\left( \text{2n} \right)}^{\text{th}}}$, there are $n$ terms.

So, the sum of the terms between these two terms,

${{{S}'}_{n}}=\dfrac{{{a}_{n+1}}\left( 1-{{r}^{n}} \right)}{1-r}$.

Thus, the ${{\left( n+1 \right)}^{th}}$ term, ${{a}_{n+1}}=a{{r}^{n+1-1}}=a{{r}^{n}}$.

So, the ratio of the sums,

$\begin{align}   & \dfrac{{{S}_{n}}}{{{{{S}'}}_{n}}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}\times \dfrac{\left( 1-r \right)}{a{{r}^{n}}\left( 1-{{r}^{n}} \right)} \\  & =\dfrac{1}{{{r}^{n}}}. \\ \end{align}$

Hence, it has been shown that the ratio of the sum of the sum of first $\text{n}$ terms of a G.P. to the sum of terms from ${{\left( \text{n+1} \right)}^{\text{th}}}$ to ${{\left( \text{2n} \right)}^{\text{th}}}$ term is $\dfrac{\text{1}}{{{\text{r}}^{\text{n}}}}$. 


25. If $\mathbf{a,}\,\mathbf{b,c}$ and $\mathbf{d}$ are in G.P., then show that

$\left( {{\mathbf{a}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{b}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{c}}^{\mathbf{2}}} \right)\left( {{\mathbf{b}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{c}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{d}}^{\mathbf{2}}} \right)\mathbf{=}{{\left( \mathbf{ab+bc+cd} \right)}^{\mathbf{2}}}$.

Ans:

It is given that the numbers $a,b,c$ and $d$ are in geometric progression (G.P.). So, we have

$\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}$.

That is,

$bc=ad$                                    …… (i)

${{b}^{2}}=ac$                                     …… (ii) 

${{c}^{2}}=bd$                                     …… (iii)

Now, Right-Hand-Side of the statement that needs to be proved,

$={{\left( ab+bc+cd \right)}^{2}}$

$={{\left( ab+ad+cd \right)}^{2}}$, applying the result of the equation (i)

 $={{\left[ ab+d\left( a+c \right) \right]}^{2}}$

$={{a}^{2}}{{b}^{2}}+2abd\left( a+c \right)+{{d}^{2}}{{\left( a+c \right)}^{2}}$

$={{a}^{2}}{{b}^{2}}+2{{a}^{2}}bd+2acbd+{{d}^{2}}\left( {{a}^{2}}+2ac+{{c}^{2}} \right)$

\[={{a}^{2}}{{b}^{2}}+2{{a}^{2}}{{c}^{2}}+2{{b}^{2}}{{c}^{2}}+{{d}^{2}}{{a}^{2}}+2{{d}^{2}}{{b}^{2}}+{{d}^{2}}{{c}^{2}}\], applying the results of equations (i) and (ii).

$={{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}+{{d}^{2}}{{a}^{2}}+{{d}^{2}}{{b}^{2}}+{{d}^{2}}{{b}^{2}}+{{d}^{2}}{{c}^{2}}$

$={{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{a}^{2}}{{d}^{2}}+{{b}^{2}}\cdot {{b}^{2}}+{{b}^{2}}{{c}^{2}}+{{b}^{2}}{{d}^{2}}+{{c}^{2}}{{b}^{2}}+{{c}^{2}}\times {{c}^{2}}+{{c}^{2}}{{d}^{2}}$, applying the results of equations (ii) and (iii) and rewriting the terms.

$={{a}^{2}}\left( {{b}^{2}}+{{c}^{2}}+{{d}^{2}} \right)+{{b}^{2}}\left( {{b}^{2}}+{{c}^{2}}+{{d}^{2}} \right)+{{c}^{2}}\left( {{b}^{2}}+{{c}^{2}}+{{d}^{2}} \right)$

$=\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( {{b}^{2}}+{{c}^{2}}+{{d}^{2}} \right)$

$=$ Left-Hand-Side of the proof statement.

Hence, it has been proved that

$\left( {{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} \right)\left( {{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}} \right)\text{=}{{\left( \text{ab+bc+cd} \right)}^{\text{2}}}$.


26. Insert two numbers between $\mathbf{3}$ and $\mathbf{81}$ so that the resulting sequence is G.P.

Ans:

Suppose the two numbers that needed to be inserted between $3$ and $31$ are ${{G}_{1}}$ and ${{G}_{2}}$, so that it forms a G.P. sequence $3,\,{{G}_{1}},\,{{G}_{2}},\,81$.

Also, assume that the first term and the common ratio respectively are $a$ and $r$.

Then, according to the given condition we have

$3{{\left( r \right)}^{4-1}}=81$

$\Rightarrow {{r}^{3}}=27$

$\Rightarrow r=3$, neglecting the imaginary roots.

Therefore, the terms 

${{G}_{1}}=ar=3\times 3=9$ and 

${{G}_{2}}=a{{r}^{2}}=3{{\left( 3 \right)}^{2}}=27$.

Hence, the numbers that need to be inserted between $3$ and $81$ are $9$ and $27$.


27. Find the value of $\mathbf{n}$ so that $\dfrac{{{\mathbf{a}}^{\mathbf{n+1}}}\mathbf{+}{{\mathbf{b}}^{\mathbf{n+1}}}}{{{\mathbf{a}}^{\mathbf{n}}}\mathbf{+}{{\mathbf{b}}^{\mathbf{n}}}}$ may be the geometric mean between $\mathbf{a}$ and $\mathbf{b}$.

Ans:

It is known that the geometric mean between $a$ and $b$ is $\sqrt{ab}$.

Therefore, according to the condition provided,

$\dfrac{{{a}^{n+1}}+{{b}^{n+1}}}{{{a}^{n}}+{{b}^{n}}}=\sqrt{ab}$

$\Rightarrow \dfrac{{{\left( {{a}^{n+1}}+{{b}^{n+1}} \right)}^{2}}}{{{\left( {{a}^{n}}+{{b}^{n}} \right)}^{2}}}=ab$, squaring both sides of the equation.

$\Rightarrow {{a}^{2n+2}}+2{{a}^{n+1}}{{b}^{n+1}}+{{b}^{2n+2}}=\left( ab \right)\left( {{a}^{2n}}+2{{a}^{n}}{{b}^{n}}+{{b}^{2n}} \right)$

$\Rightarrow {{a}^{2n+2}}+2{{a}^{n+1}}{{b}^{n+1}}+{{b}^{2n+2}}={{a}^{2n+1}}b+2{{a}^{n+1}}{{b}^{n+1}}+a{{b}^{2n+1}}$

$\Rightarrow {{a}^{2n+2}}+{{b}^{2n+2}}={{a}^{2n+1}}b+a{{b}^{2n+1}}$

$\Rightarrow {{a}^{2n+2}}-{{a}^{2n+1}}b=a{{b}^{2n+1}}-{{b}^{2n+2}}$.

$\Rightarrow {{a}^{2n+1}}\left( a-b \right)={{b}^{2n+1}}\left( a-b \right)$

$\Rightarrow {{\left( \dfrac{a}{b} \right)}^{2n+1}}=1={{\left( \dfrac{a}{b} \right)}^{0}}$

$\Rightarrow 2n+1=0$

$\Rightarrow n=-\dfrac{1}{2}$.

Hence, for $n=-\dfrac{1}{2}$, $\dfrac{{{\text{a}}^{\text{n-1}}}\text{+}{{\text{b}}^{\text{n-1}}}}{{{\text{a}}^{\text{n}}}\text{+}{{\text{b}}^{\text{n}}}}$ may be the geometric mean between $\text{a}$ and $b$.


28. The sum of two numbers is $\mathbf{6}$ times their geometric mean, show that numbers are in the ratio $\left( \mathbf{3+2}\sqrt{\mathbf{2}} \right)\mathbf{:}\left( \mathbf{3-2}\sqrt{\mathbf{2}} \right)$.

Ans:

Suppose that $a$ and $b$ are the two numbers.

Then, their geometric mean $=\sqrt{ab}$.

So, by the condition provided to us,

$a+b=6\sqrt{ab}$                                                  …… (i)

Squaring both sides of the equation (i), we have

${{\left( a+b \right)}^{2}}=36ab$                                             …… (ii)

Now,

${{\left( a-b \right)}^{2}}={{\left( a+b \right)}^{2}}-4ab$

$=36ab-4ab$, using the equation (ii).

$=32ab$.

$\Rightarrow a-b=\sqrt{32}\sqrt{ab}=4\sqrt{2}\sqrt{ab}$                      …… (iii)

Therefore, adding the equation (i) and (iii), gives

$2a=\left( 6+4\sqrt{2} \right)\sqrt{ab}$

$\Rightarrow a=\left( 3+2\sqrt{2} \right)\sqrt{ab}$                                        …… (iv)

Now, using the equation (iv) into the equation (i), gives

$b=6\sqrt{ab}-\left( 3+2\sqrt{2} \right)\sqrt{ab}$

$\Rightarrow b=\left( 3-2\sqrt{2} \right)\sqrt{ab}$                                         ….. (v)

Thus, dividing the equation (iv) by (v) we have,

$\dfrac{a}{b}=\dfrac{\left( 3+2\sqrt{2} \right)\sqrt{ab}}{\left( 3-2\sqrt{2} \right)\sqrt{ab}}=\dfrac{3+2\sqrt{2}}{3-2\sqrt{2}}$

Hence, the ratio of the numbers is $\left( 3+2\sqrt{2} \right):\left( 3-2\sqrt{2} \right)$.


29. If $\mathbf{A}$ and $\mathbf{G}$ be A.M. and G.M., respectively between two positive numbers, prove that the numbers are $\mathbf{A\pm }\sqrt{\left( \mathbf{A+G} \right)\left( \mathbf{A-G} \right)}$.

Ans:

Suppose that $a$ and $b$ are the two positive numbers.

Then, according to the definition, A.M and G.M of the numbers are

$A=\dfrac{a+b}{2}$                                 …… (i)

$G=\sqrt{ab}$                                  …… (ii)

Rewriting the equations (i) and (ii), gives

$a+b=2A$                               …… (iii)

$ab={{G}^{2}}$                                   …… (iv)

Now, it is known that,

${{\left( a-b \right)}^{2}}={{\left( a+b \right)}^{2}}-4ab$

$={{\left( 2A \right)}^{2}}-4{{G}^{2}}$, using the equations (iii) and (iv).

$\begin{align}   & =4{{A}^{2}}-4{{G}^{2}} \\  & =4\left( {{A}^{2}}-{{G}^{2}} \right) \\ \end{align}$

Therefore,

${{\left( a-b \right)}^{2}}=4\left( A+G \right)\left( A-G \right)$

$\Rightarrow a-b=2\sqrt{\left( A+G \right)\left( A-G \right)}$       …… (v)

Adding the equations (iii) and (v) we have

$2a=2A+2\sqrt{\left( A+G \right)\left( A-G \right)}$

$\Rightarrow a=A+\sqrt{\left( A+G \right)\left( A-G \right)}$        …… (vi)

Thus, the equations (iii) and (vi) gives

$\begin{align}   & b=2A-A-\sqrt{\left( A+G \right)\left( A-G \right)} \\  & =A-\sqrt{\left( A+G \right)\left( A-G \right)}. \\ \end{align}$

Hence, the two positive numbers are $A\pm \sqrt{\left( A+G \right)\left( A-G \right)}$.


30. The number of bacteria in a certain culture doubles every hour. If there were $\mathbf{30}$ bacteria present in the culture originally, how many bacteria will be present at the end of ${{\mathbf{2}}^{\mathbf{nd}}}$ hour, ${{\mathbf{4}}^{\mathbf{th}}}$ hour, and ${{\mathbf{n}}^{\mathbf{th}}}$ hour?

Ans:
Since, the number of bacteria is increasing by two times in each hour, so the problem makes a geometric progression.

It is given that, originally there were $30$ bacteria.

So, the first term of the G.P. is $a=30$ and the common ratio is $r=2$.

Thus, the number of bacteria will present at the end of ${{2}^{nd}}$ hour is given by  ${{a}_{3}}=a{{r}^{3-1}}=\left( 30 \right){{\left( 2 \right)}^{2}}=120$.

The number of bacteria will present at the end of ${{4}^{th}}$ hour is given by

${{a}_{5}}=a{{r}^{5-1}}=\left( 30 \right){{\left( 2 \right)}^{4}}=480$.

Also, the number of bacteria will present at the end of ${{n}^{th}}$ hour is given by ${{a}_{n+1}}=a{{r}^{n}}=\left( 30 \right){{2}^{n}}$.


31. What will Rs. $\mathbf{500}$ amounts to $\mathbf{10}$ years after its deposit in a bank which pays an annual interest rate of $\mathbf{10}%$ compounded annually?

Ans:

The deposited amount to the bank is Rs. $500$.

The amount obtained after the end of the first year 

$=$Rs. $500\left( 1+\dfrac{1}{10} \right)=Rs.\,500\left( 1.1 \right)$.

The amount obtained after the end of the second year,

$=Rs.\,500\left( 1.1 \right)\left( 1.1 \right)$.

The amount obtained after the end of third year,

$=Rs.\,500\left( 1.1 \right)\left( 1.1 \right)\left( 1.1 \right)$ and …so on

Therefore, after the end of $10$ years, the amount $=Rs.\,\,500\left( 1.1 \right)\left( 1.1 \right)...\left( 10\,\,\text{times} \right)$

$=Rs.\,\,500{{\left( 1.1 \right)}^{10}}$.


32. If A.M. and G.M. of roots of a quadratic equation are $\mathbf{8}$ and $\mathbf{5}$, respectively, then obtain the quadratic equation.

Ans:

First suppose that $a$ and $b$ are the roots of the quadratic equation.

Then, A.M. and G.M. of the roots $a$ and $b$ are such that

A.M.$=\dfrac{a+b}{2}$ and

G.M.$=\sqrt{ab}$.

Therefore, by the condition given to us,

$\dfrac{a+b}{2}=8$

$\Rightarrow a+b=16$                                                   …… (i)

and $\sqrt{ab}=5$

$\Rightarrow ab=25$                                                      …… (ii)

Now, we know that, in a quadratic equation of $x$,

${{x}^{2}}-x\left( \text{sum of roots} \right)+\left( \text{product of the roots} \right)=0$

$\Rightarrow {{x}^{2}}-\left( a+b \right)x+\left( ab \right)=0$

$\Rightarrow {{x}^{2}}-16x+25=0$, substituting the values of $a+b$ and $ab$.

Hence, the needed quadratic equation is ${{x}^{2}}-16x+25=0$.


Conclusion

In conclusion, Class 11 Maths Chapter 8 Exercise 8.2 Solutions has provided you with valuable practice in understanding and solving problems related to arithmetic progressions (AP). By working through Class 11 Maths NCERT Solutions Chapter 8 Exercise 8.2, you have learned how to identify arithmetic sequences, find the common difference, and calculate both the nth term and the sum of the first n terms of an AP. These concepts are important for your understanding of sequences and series, and they have various applications in real-world scenarios and advanced mathematical studies.


Class 11 Maths Chapter 8: Exercises Breakdown

Exercise

Number of Questions

Exercise 8.1

14 Questions & Solutions

Miscellaneous Exercise

18 Questions & Solutions


CBSE Class 11 Maths Chapter 8 Other Study Materials


Chapter-Specific NCERT Solutions for Class 11 Maths

Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.


Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 11 Maths Chapter 8 Sequences And Series Ex 8.2

1. What are the main concepts students must master in NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series?

Students need to understand sequences and series, including the definitions of arithmetic progression (AP) and geometric progression (GP), general terms, finding the nth term, calculating the sum of n terms, and applying formulas for both AP and GP. Concepts such as arithmetic mean, geometric mean, special series, and relationships between AP and GP also form the core of this chapter as per CBSE 2025–26 guidelines.

2. How do you determine if a given sequence is an arithmetic progression (AP) in Class 11 Chapter 8 NCERT Solutions?

To check if a sequence is an AP, evaluate the difference between consecutive terms. If the difference (common difference d) remains constant across the sequence, it is an arithmetic progression. The general term is given by an = a + (n − 1)d, where a is the first term and d is the common difference.

3. What is the formula for the nth term and the sum of n terms in a GP covered in Class 11 Maths Chapter 8?

For a geometric progression (GP) with first term a and common ratio r:

  • The nth term is an = arn−1
  • The sum of first n terms (if r ≠ 1) is Sn = a (1 − rn) / (1 − r)

4. Why does Class 11 Maths Chapter 8 include both AP and GP in the same chapter, and what is a common mistake students make when distinguishing them?

This chapter develops a comprehensive understanding of progressions—a central idea in series and sequences. AP and GP are discussed together to highlight contrasts and transitions between additive (AP) and multiplicative (GP) patterns. A common misconception is assuming the common difference or ratio applies interchangeably or overlooking sign changes in GP, especially with negative ratios.

5. How do you find the sum of the first n terms for a series where the common ratio is less than 1 in GP, as per NCERT Class 11 Chapter 8?

For a GP with 0 < r < 1, use Sn = a (1 − rn) / (1 − r). As n increases, if r is a positive fraction, rn becomes very small, so the sum approaches a / (1 − r). This principle is often asked in CBSE and helps in modeling convergent series.

6. What strategy is recommended for solving scenario-based or application questions in Class 11 Maths Chapter 8 NCERT Solutions?

Start by identifying whether the context matches AP or GP (for example, constant increases imply AP, repeated doubling/halving implies GP). Write the relevant sequence explicitly, determine the required term or sum using the standard formula, and be careful with units and context as specified in the CBSE 2025–26 pattern.

7. How does finding the nth term in an AP or GP help in real-life mathematical modelling?

Knowing the nth term allows you to predict outcomes at any stage in financial planning (EMIs, investments), biology (bacteria growth), or digital applications (compounding, coding algorithms). This ability is a focus in Class 11 exams and supports analytical skills needed for higher mathematics and competitive exams.

8. How can a student quickly distinguish between a finite and an infinite sequence in NCERT Class 11 Chapter 8?

If the sequence terminates after a set number of terms, it’s finite. If there is no natural end and terms continue indefinitely (for example, the sequence of natural numbers), it is infinite. This distinction is important for deciding which formulas or summation approaches to use when solving problems.

9. What are special series as discussed in Class 11 Maths Chapter 8, and why are they significant in the NCERT Solutions?

Special series include the sum to n terms of squares, cubes, or consecutive natural numbers. These frequently appear in advanced calculation and reasoning-based CBSE questions. Knowing standard results (e.g., sum of first n natural numbers = n(n+1)/2) speeds up problem-solving and helps in reducing errors.

10. In NCERT Solutions for Class 11 Maths Chapter 8, how can you determine if a given value is a specific term in a given sequence?

Set the nth term formula equal to the given value, solve for n, and check if n yields a positive integer. For AP: a + (n − 1)d = value; for GP: a·rn−1 = value. Valid solutions correspond to actual terms of the sequence, as per CBSE procedures.

11. How do NCERT Solutions for Class 11 Maths Chapter 8 help reduce common maths-related fears among students?

By providing detailed step-by-step solutions, linking abstract formulas to practical examples, and focusing on logical rather than rote learning, NCERT Solutions make concepts accessible, boost confidence, and encourage structured practice for every student as required by CBSE examiners.

12. What are ‘insertions’ in GP or AP, and how are such questions solved in NCERT Class 11 Chapter 8?

‘Insertions’ questions require finding values to place between two given numbers so the sequence becomes a progression. For AP, use the formula for the nth term; for GP, equate the first and last term to a·rn−1, solve for r, and find the inserted terms. This builds strong algebra and reasoning skills.

13. Why are formulas and definitions from Class 11 Maths Chapter 8 expected in CBSE board questions and competitive exams?

Progression concepts (AP, GP, special series) are foundational for higher mathematics, and are heavily tested due to their wide applications in science, finance, and computation. Mastery here demonstrates algebraic reasoning and readiness for Class 12 and competitive exams like JEE, NEET, etc.