Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 11 Maths Chapter 8 Binomial Theorem in Hindi - 2025-26

ffImage
banner

NCERT Solutions For Class 11 Maths Chapter 8 Binomial Theorem in Hindi - 2025-26

In NCERT Solutions Class 11 Maths Chapter 8 In Hindi, you’ll explore the important ideas of the Binomial Theorem, learning how to easily expand expressions and solve tricky questions step by step. This chapter often confuses students with its formulas and big calculations, but don’t worry—everything is explained in a simple way, so even if you’re not confident in Maths, you’ll find it easy to follow.


On this page, you’ll find easy, clear Class 11 Maths NCERT Solutions for every exercise, carefully prepared by Vedantu’s team. Use the Hindi medium solutions to clear up your doubts and practice at your own pace. You can also get the solutions as a free PDF to revise wherever you are. If you want to review what’s covered this term, the Class 11 Maths syllabus can help.


Working through these solutions will help you understand the Binomial Theorem deeply and get ready for your exams with more confidence. Practicing with NCERT Solutions is a smart way to strengthen your basics and perform better in CBSE Class 11 exams.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Mathematics Chapter ८:द्विपद प्रमेय

प्रश्नावली 8.1

1 से 5 तक प्रत्येक व्यंजक का प्रसार कीजिए। 

1. $\mathbf{(1-2 x)^{5}}$

उत्तर: $(1-2 x)^{5}$

$={ }^{5} C_{0}(1)^{5}-{ }^{5} C_{1}(1)^{4}(2 x)+{ }^{5} C_{2}(1)^{3}(2 x)^{2}-{ }^{5} C_{3}(1)^{2}(2 x)^{3}+{ }^{5} C_{4}(1)(2 x)^{4}-{ }^{5} C_{5}(2 x)^{5}$

$=1-5(2 x)+10\left(4 x^{2}\right)-10\left(8 x^{3}\right)+5\left(16 x^{4}\right)-32 x^{5}$

$=1-10 x+40 x^{2}-80 x^{3}+80 x^{4}-32 x^{5}$


2. $\left(\dfrac{2}{x}-\dfrac{x}{2}\right)^{5}$

उत्तर : $\left(\dfrac{2}{x}-\dfrac{x}{2}\right)^{5}$

$=^{5} C_{0}\left(\dfrac{2}{x}\right)^{5}-{ }^{5} C_{1}\left(\dfrac{2}{x}\right)^{4}\left(\dfrac{x}{2}\right)+{ }^{5} C_{2}\left(\dfrac{2}{x}\right)^{3}\left(\dfrac{x}{2}\right)^{2}-{ }^{5} C_{3}\left(\dfrac{2}{x}\right)^{2}\left(\dfrac{x}{2}\right)^{3}+{ }^{5} C_{4}\left(\dfrac{2}{x}\right)\left(\dfrac{x}{2}\right)^{4}-{ }^{5} C_{5}\left(\dfrac{x}{2}\right)^{5}$

$=\dfrac{32}{x^{5}}-5\left(\dfrac{16}{x^{4}}\right)\left(\dfrac{x}{2}\right)+10\left(\dfrac{8}{x^{3}}\right)\left(\dfrac{x^{2}}{4}\right)-10\left(\dfrac{4}{x^{2}}\right)\left(\dfrac{x^{3}}{8}\right)+5\left(\dfrac{2}{x}\right)\left(\dfrac{x^{4}}{16}\right)-\dfrac{x^{5}}{32}$

$=\dfrac{32}{x^{5}}-\dfrac{40}{x^{3}}+\dfrac{20}{x}-5 x+\dfrac{5}{8} x^{3}-\dfrac{x^{5}}{32}$


3. $\mathbf{(2 x-3)^{6}}$

उत्तर : $(2 x-3)^{6}$

$={ }^{6} C_{0}(2 x)^{6}-{ }^{6} C_{1}(2 x)^{5}(3)+{ }^{6} C_{2}(2 x)^{4}(3)^{2}-{ }^{6} C_{3}(2 x)^{3}(3)^{3}+{ }^{6} C_{4}(2 x)^{2}(3)^{4}-{ }^{6} C_{5}(2 x)(3)^{5}+{ }^{6} C_{6}(3)^{6}$

$=64 x^{6}-6\left(32 x^{5}\right)(3)+15\left(16 x^{4}\right)(9)-20\left(8 x^{3}\right)(27)+15\left(4 x^{2}\right)(81)-6(2 x)(243)+729$

$=64 x^{6}-576 x^{5}+2160 x^{4}-4230 x^{3}+4860 x^{2}-2916 x+729$


4. $\mathbf{\left(\dfrac{x}{3}+\dfrac{1}{x}\right)^{5}}$

उत्तर : $\left(\dfrac{x}{3}+\dfrac{1}{x}\right)^{5}$

$=C_{0}\left(\dfrac{x}{3}\right)^{5}+{ }^{5} C_{1}\left(\dfrac{x}{3}\right)^{4}\left(\dfrac{1}{x}\right)+{ }^{5} C_{2}\left(\dfrac{x}{3}\right)^{3}\left(\dfrac{1}{x}\right)^{2}+{ }^{5} C_{3}\left(\dfrac{x}{3}\right)^{2}\left(\dfrac{1}{x}\right)^{3}+n^{5} C_{4}\left(\dfrac{x}{3}\right)\left(\dfrac{1}{x}\right)^{4}+{ }^{5} C_{5}\left(\dfrac{1}{x}\right)^{5}$

$=\dfrac{x^{5}}{243}+5\left(\dfrac{x^{4}}{81}\right)\left(\dfrac{1}{x}\right)+10\left(\dfrac{x^{3}}{27}\right)\left(\dfrac{1}{x^{2}}\right)+10\left(\dfrac{x^{2}}{9}\right)\left(\dfrac{1}{x^{3}}\right)+5\left(\dfrac{x}{3}\right)\left(\dfrac{1}{x^{4}}\right)+\dfrac{1}{x^{5}}$

$=\dfrac{x^{5}}{243}+\dfrac{5 x^{2}}{81}+\dfrac{10}{27}+\dfrac{10}{9 x}+\dfrac{5}{3 x^{3}}+\dfrac{1}{x^{5}}$


5. $\mathbf{\left(x+\dfrac{1}{x}\right)^{6}}$

उत्तर : $\left(x+\dfrac{1}{x}\right)^{6}$

$={ }^{6} C_{0}(x)^{6}+{ }^{6} C_{1}(x)^{5}\left(\dfrac{1}{x}\right)+{ }^{6} C_{2}(x)^{4}\left(\dfrac{1}{x}\right)^{2}+{ }^{6} C_{3}(x)^{3}\left(\dfrac{1}{x}\right)^{3}+n^{6} C_{4}(x)^{2}\left(\dfrac{1}{x}\right)^{4}+{ }^{6} C_{5}(x)\left(\dfrac{1}{x}\right)^{5}+{ }^{6} C_{6}\left(\dfrac{1}{x}\right)^{6}$

$=x^{6}+6(x)^{5}\left(\dfrac{1}{x}\right)+15(x)^{4}\left(\dfrac{1}{x^{2}}\right)+20(x)^{3}\left(\dfrac{1}{x^{3}}\right)+15(x)^{2}\left(\dfrac{1}{x^{4}}\right)+6(x)\left(\dfrac{1}{x^{5}}\right)+\dfrac{1}{x^{6}}$

$=x^{6}+6 x^{4}+15 x^{2}+20+\dfrac{15}{x^{2}}+\dfrac{6}{x^{4}}+\dfrac{1}{x^{6}}$


द्विपद प्रमेय का प्रयोग करके निम्रलिखित का मान ज्ञात कीजिए।

6. $\mathbf{(96)^{3}}$

उत्तर : $(96)^{3}$

$=(100-4)^{3}$

$=^{3} C_{0}(100)^{3}-{ }^{3} C_{1}(100)^{2}(4)+{ }^{3} C_{2}(100)(4)^{23} C_{3}(4)^{3}$

$=(100)^{3}-3(100)^{2}(4)+3(100)(4)^{2}-(4)^{3}$

$=1000000-120000+4800-64$

$=884736$


7. $\mathbf{(102)^{5}}$

उत्तर : $(102)^{5}$

$=(100+2)^{5}$

$=^{5} C_{0}(100)^{5}+{ }^{5} C_{1}(100)^{4}(2)+{ }^{5} C_{2}(100)^{3}(2)^{2}+{ }^{5} C_{3}(100)^{2}(2)^{3}+{ }^{5} C_{4}(100)(2)^{4}+{ }^{5} C_{5}(2)^{5}$

$=(100)^{5}+5(100)^{4}(2)+10(100)^{3}(2)^{2}+10(100)^{2}(2)^{3}+5(100)(2)^{4}+(2)^{5}$

$=10000000000+1000000000+40000000+800000+8000+32$

$=11040808032$


8. $\mathbf{(101)^{4}}$

उत्तर :  $(101)^{4}$

$=(100+1)^{4}$

$={ }^{4} C_{0}(100)^{4}+{ }^{4} C_{1}(100)^{3}(1)+{ }^{4} C_{2}(100)^{2}(1)^{2}+{ }^{4} C_{3}(100)(1)^{3}+{ }^{4} C_{4}(1)^{4}$

$=(100)^{4}+4(100)^{3}+6(100)^{2}+4(100)+(1)^{4}$

$=100000000+4000000+60000+400+1$

$=104060401$

9. $\mathbf{(99)^{5}}$

उत्तर : $(99)^{5}$

$=(100-1)^{5}$

$={ }^{5} C_{0}(100)^{5}-{ }^{5} C_{1}(100)^{4}(1)+{ }^{5} C_{2}(100)^{3}(1)^{2}-{ }^{5} C_{3}(100)^{2}(1)^{3}+{ }^{5} C_{4}(100)(1)^{4}-{ }^{5} C_{5}(1)^{5}$

$=(100)^{5}-5(100)^{4}+10(100)^{3}-10(100)^{2}+5(100)-1$

$=10000000000-500000000+10000000-100000+500-1$

$=10010000500-500100001$

=9509900499


10. द्विपद प्रमेय का प्रयोग करते हुए बताइए कौन-सी संख्या बड़ी है $(1.1)^{10000}$ या 1000 ।

उत्तर : $(1.1)^{10000}$

$=(1+0.1)^{1000}$

$=1^{10000}+{ }^{10000} C_{1}(1)^{9999}(0.1)^{1}$

$=1+10000(0.1)+\ldots \ldots$

$=1001+\ldots$ .

स्पष्ट है कि, $(1.1)^{10000}$ संख्या 1000 से बड़ी है।


11: $\mathbf{(a+b)^{4}-(a-b)^{4}}$ का विस्तार कीजिए। इसका प्रयोग करके $\mathbf{(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}}$ का मान ज्ञात कीजिए।

उत्तर : $(a+b)^{4}-(a-b)^{4}$

$(a+b)^{4}={ }^{4} C_{0}(a)^{4}+{ }^{4} C_{1}(a)^{3}(b)+{ }^{4} C_{2}(a)^{2}(b)^{2}+{ }^{4} C_{3}(a)(b)^{3}+{ }^{4} C_{4}(b)^{4}$

$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$

$(a-b)^{4}={ }^{4} C_{0}(a)^{4}-{ }^{4} C_{1}(a)^{3}(b)+{ }^{4} C_{2}(a)^{2}(b)^{2}-{ }^{4} C_{3}(a)(b)^{3}+{ }^{4} C_{4}(b)^{4}$

$(a-b)^{4}=a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}$

$(a+b)^{4}-(a-b)^{4}=2\left(4 a^{3} b+4 a b^{3}\right)$

$=8 a b\left(a^{2}+b^{2}\right)$

$a=\sqrt{3} b=\sqrt{2}$

$(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}$

$=8(\sqrt{3})(\sqrt{2})\left((\sqrt{3})^{2}+(\sqrt{2})^{2}\right)$

$=8(\sqrt{6})(3+2)$

$=8(5)(\sqrt{6})$

$=40 \sqrt{6}$


12: $\mathbf{(x+1)^{6}+(x-1)^{6}}$ का मान ज्ञात कीजिए । इसका प्रयोग करके या अन्यथा $\mathbf{(\sqrt{2}+1)^{6}-(\sqrt{2}-1)^{6}}$ का मान ज्ञात कीजिए।

उत्तर : $(x+1)^{6}+(x-1)^{6}(x+1)^{6}$

$={ }^{6} C_{0}(x)^{6}+{ }^{6} C_{1}(x)^{5}(1)+{ }^{6} C_{2}(x)^{4}(1)^{2}+{ }^{6} C_{3}(x)^{3}(1)^{3}+{ }^{6} C_{4}(x)^{2}(1)^{4}+{ }^{6} C_{5}(x)(1)^{5}+{ }^{6} C_{6}(1)^{6}(x+1)^{6}$

$=x^{6}+6 x^{5}+15 x^{4}+20 x^{3}+15 x^{2}+6 x+1(x-1)^{6}$

$={ }^{6} C_{0}(x)^{6}-{ }^{6} C_{1}(x)^{5}(1)+{ }^{6} C_{2}(x)^{4}(1)^{2}-{ }^{6} C_{3}(x)^{3}(1)^{3}+{ }^{6} C_{4}(x)^{2}(1)^{4}-{ }^{6} C_{5}(x)(1)^{5}+{ }^{6} C_{6}(1)^{6}(x-1)^{6}$

$=x^{6}-6 x^{5}+15 x^{4}-20 x^{3}+15 x^{2}-6 x+1(x+1)^{6}+(x-1)^{6}$

$=2\left(x^{6}+15 x^{4}+15 x^{2}+1\right) x$

$=\sqrt{2},(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$

$=2\left[(\sqrt{2})^{6}+15(\sqrt{2})^{4}+15(\sqrt{2})^{2}+1\right]$

$=2[8+15 \times 4+15 \times 2+1]$

$=2[8+60+30+1]$

$=2 \times 99$

=198


13: दिखाइए कि $\mathbf{9^{(n+1)}-8 n-9,64}$ से विभाज्य है जहाँ $n$ एक धान पूर्णांक है। 

उत्तर: $(1+x)^{n+1}$

$=1+{ }^{n+1} C_{1} x+{ }^{n+1} C_{2} x^{2}+{ }^{n+1} C_{3} x^{3}+\ldots x$

$=8,9^{n+1}=1+(n+1) 8+{ }^{n+1} C_{2}(64)+{ }^{n+1} C_{3}(8)^{3}+\ldots .$

$=8 n+9+{ }^{n+1} C_{2}(64)+{ }^{n+1} C_{3}(8)^{3}+\ldots$

$9^{n+1}-8 n-9=64\left({ }^{n+1} C_{2}+{ }^{\mathrm{n}+1} C_{3}(8)+\ldots \ldots\right)$

अत: $9^{n+1}-8 n-9$, संख्या 64 से विभाजित है।


14: सिद्ध कीजिए कि $\mathbf{\sum_{r=0}^{n} 3^{r^{n}} C_{r}=4^{n}}$

उत्तर : $\sum_{r=0}^{n} 3^{r^{n}} C_{r}$

$=(3)^{0 n} C_{0}+(3)^{\ln } C_{1}+(3)^{2 n} C_{2}+\ldots \ldots+(3)^{\mathrm{m}} C_{n}$

$=(1+3)^{n}$

$=4^{n}$


प्रश्नावली $8.2$

1. $(x+3)^{8}$ में $x^{5}$ का गुणांक ज्ञात कीजिए।

उत्तर : $(x+3)^{8}$ के द्विपदीय विस्तार है ${ }_{r}^{8} C x^{(8-r)} 3^{r}$, इसलिये $x^{5}=x^{8-r}$

दोनों पक्षों को बराबर करना, $5=8-r$

$\therefore \mathrm{r}=3$

$x^{5}$ का गुणांक है ${ }_{r}^{8} C .3^{r}={ }_{3}^{8} C .3^{3}=\dfrac{8 \times 7 \times 6}{1 \times 2 \times e} \times 27$

$=56 \times 27$

$=1512$


2. $(a-2 b)^{12}$ में $a^{5} b^{7}$ का गुणांक ज्ञात कीजिए।

उत्तर: $(a-2 b)^{12}$ के द्विपदीय विस्तार है ${ }_{r}^{2} C a^{12-r}(-2 b)^{r}$

$={ }_{r}^{12} C a^{12-r}(-1)^{r} 2^{r} b^{r}$

इसलिये $b^{7}=b^{r}$

$\therefore r=7$ $(\therefore r=7$ रखने पूर $)$ $={ }_{7}^{12} C a^{12-7}(-1)^{7} 2^{7} b^{7}$

$=a^{5} b^{712} C(-1)^{7} 2^{7}$

$a^{5} b^{7}$ का गुणांक है, ${ }_{7}^{12} C(-1)^{7} 2^{7}=-\dfrac{12 \times 11 \times 10 \times 9 \times 8}{1 \times 2 \times 3 \times 4 \times 5} \times 128$ $=-101376$


3. $\mathbf{\left(x^{2}-y\right)^{6}}$ के द्विपद विस्तार में सामान्य शब्द लिखें| 

उत्तर: $\left(x^{2}-y\right)^{6}$ के द्विपदीय विस्तार है ${ }_{r}^{6} C\left(x^{2}\right)^{6-r}(-y)^{r}$

$={ }_{r}^{6} C x^{12-2 r}(-1)^{r}(y)^{r}$


4. $\mathbf{\left(x^{2}-x y\right)^{12}}$ के द्विपदीय विस्तार में सामान्य शब्द लिखें| 

उत्तर: $\left(x^{2}-x y\right)^{12}$ के द्विपदीय विस्तार है ${ }^{12} C\left(x^{2}\right)^{12-r}(-y x)^{r}$

$={ }_{r}^{12} C x^{24-2 r}(-1)^{r}(y)^{r}(x)^{r}$

$=^{12} C x^{24-r}(-1)^{r}(y)^{r}$


5. $\mathbf{(x-2 y)^{12}}$ का चौथा शब्द द्विपद विस्तार में लिखें| 

उत्तर : $(x-2 y)^{12}$ का चौथा शब्द है

$=T_{3+1}={ }_{3}^{12} C x^{12-3}(-2 y)^{3}$

$=\dfrac{12 \times 11 \times 10}{1 \times 2 \times 3} x^{9}(-1)^{3} 2^{3} y^{3}$

$=-220 \times 8 \times x^{9} y^{3}$

$=-1760 x^{9} y^{3}$


6. $\mathbf{\left(9 x-\dfrac{1}{3 \sqrt{x}}\right)^{18}}$ के द्विपद विस्तार में 13 वां शब्द लिखें| 

उत्तर : $\left(9 x-\dfrac{1}{3 \sqrt{x}}\right)^{18}$ का 13 वां शब्द है,

$T_{12+1}=_{12}^{18} C(9 x)^{18-12}\left(-\dfrac{1}{3 \sqrt{x}}\right)^{12}$

$={ }_{12}^{18} C 9^{6} x^{6} \dfrac{(-1)^{12}}{3^{12}(\sqrt{x})^{12}}$

$=\dfrac{18 \times 17 \times 16 \times 15 \times 14 \times 13}{1 \times 2 \times 3 \times 4 \times 5 \times 6} \times \dfrac{3^{12} \cdot x^{6}}{3^{12} \cdot x^{6}}$

=18564


7. $\left(3-\dfrac{x^{3}}{6}\right)^{7}$ के द्विपदीय विस्तार में मध्य अवधि का पता लगाएं।

उत्तर : $\left(3-\dfrac{x^{3}}{6}\right)^{7}$ में $7+1=8$ पद है

पहला मध्य पद, $T_{4}=T_{3+1}=\dfrac{8}{2}=4$ वां पद है,

${ }_{3}^{7} C 3^{7-3}\left(-\dfrac{x^{3}}{6}\right)^{3}$

$=\dfrac{7 \times 6 \times 5}{1 \times 2 \times 3} 3^{4}(-1)^{3} \dfrac{x^{9}}{6^{3}}$

$=-35 \dfrac{3^{4} x^{9}}{2^{3} 3^{3}}$

$=-\dfrac{35.3 \cdot x^{9}}{8}$

$=-\dfrac{105 x^{9}}{8}$

दूसरा मध्य पद, $T_{5}=T_{4+1}=(4+1)=5$ वां पद है,

${ }_{4}^{7} C 3^{7-4}\left(-\dfrac{x^{3}}{6}\right)^{4}$

$=\dfrac{7 \times 6 \times 5}{1 \times 2 \times 3} 3^{3}(-1)^{4} \dfrac{x^{12}}{6^{4}}$

$=\dfrac{35 \cdot x^{12}}{16 x 3}$

$=\dfrac{35}{48} x^{12}$


8. $\mathbf{\left(\dfrac{x}{3}+9 y\right)^{10}}$ के द्विपदीय विस्तार में मध्य अवधि का पता लगाएं।

उत्तर : $\left(\dfrac{x}{3}+9 y\right)^{10}$ में $10+1=11$ पद है

मध्य पद $=\dfrac{11+1}{2}=6$ वां पद है,

$={ }_{5}^{0} C\left(\dfrac{x}{3}\right)^{5}(9 y)^{5}$

$=\dfrac{10 \times 9 \times 8 \times 7 \times 6}{1 \times 2 \times 3 \times 4 \times 5} \times \dfrac{x^{5}}{3^{5}} 9^{5} y^{5}$

$=252 \times \dfrac{3^{10}}{3^{5}} x^{5} y^{5}$

$=252 \times 243 x^{5} y^{5}$

$=61236 x^{5} y^{5}$


9. $\mathbf{(1+a)^{m+n}}$ के विस्तार में, सिद्ध कीजिए कि $a^{m}$ और $a^{n}$ के गुणांक बराबर हैं।

उत्तर : $(1+a)^{m+n}$ का सामान्य विस्तार

$={ }^{m+n}{ }_{r} C l^{m+n-r} x^{r}={ }^{m+n} r C x^{r}$

इसलिये 

$T_{m+1}={ }^{m+n}{ }_{m} C x^{m}, a^{m}$ का गुणांक है $=\dfrac{m+n}{m} C=\dfrac{(m+n) !}{m ! n !}$ 

$T_{n+1}={ }^{m+n}{ }_{n} C x^{n}, a^{n}$ का गुणांक है $=^{m+n} n C=\dfrac{(m+n) !}{m ! n !}$

अत: $a^{m}$ और $a^{n}$ के गुणांक बराबर हैं।


10. $(x+1)^{n}$ के प्रसार में $(r-1)$ वां, $r$ वां और $(r+1)$ वे पदों के गुणांक में $1: 3: 5$ का अनुपात हो तोह $n$ और $r$ के मान ज्ञात करें।

$T_{r+1}={ }_{r}^{n} C x^{n-r}$

उत्तर : $(x+1)^{n}$ का सामान्य विस्तार ${ }_{r}^{n} C x^{(n-r)} 1=_{r}^{n} C x^{(n-r)}$

$T_{r-1}={ }_{r-2}^{n} C x^{n-r+2}$

$(r-1)$ th का गुणांक है $r={ }^{n} C T_{r-1}=r-2^{n} C x^{n-r+2} \ldots(i)$

$r$ वां का गुणांक है, $r_{r-2}^{n} C T_{r}={ }_{r-1}^{n} C x^{n-r+1} \ldots(ii)$ $(r+1)$ का गुणांक है, $r_{r-1}^{n} C$...(iii)

$(i)$ और $(ii)$ से:

$\dfrac{r-2^{n} C}{r^{\prime}-1 C}=\dfrac{1}{3}$

$\dfrac{n !}{\dfrac{(r-2) !(n-r+2) !}{n !}}{\dfrac{1}{3}}$

${\dfrac{(r-1) !(n-r+1) !}{}}{(r-2) !(n-r+2)(n-r+1) !}=\dfrac{1}{3}$

$(ii)$ और $(iii)$ से

$\dfrac{r-1}{n-r+2}=\dfrac{1}{3}$

$\Rightarrow>3 r-3=n-r+2$

$\Rightarrow n=4 r-5 \ldots(i v)$

$(iv)$ और $(v)$ से

$8 r=3(4 r-5)+3$

$8 r=12 r-5+3$

$r=3$

$\therefore n=4 \times 3-5=7$


11. सिद्ध कीजिये कि $(1+x)^{2} n$ के प्रसार में $x^{n}$ का गुणांक $(1+x)^{(2 n-1)}$ के प्रसार में $x^{n}$ का गुणांक का दोगुना है।

उत्तर : $(1+x)^{2} n$ लिखा जा सकता है ${ }_{r}^{2 n} C x^{r}$

$T_{n+1}={ }_{n}^{2 n} C x^{n}=\dfrac{(2 n) !}{n ! n !}=\dfrac{2 n(2 n-1) !}{n(n-1) n !}=2 \cdot \dfrac{(2 n-1) !}{(n-1) ! n !} \ldots(i)$

$(1+\mathrm{x})^{2 n-1}$ लिखा जा सकता है ${ }^{2 n-1}{ }_{r} C x^{r}$

$T_{n+1}=^{2 n-1} n C x^{n}=\dfrac{(2 n-1) !}{n !(n-1) !}=\dfrac{(2 n-1) !}{(n-1) ! n !} \ldots(ii)$

$(i)$ और $(ii)$ से

$x^{n}$ का गुणांक $(1+x)^{2} n$ के प्रसार में $(1+x)^{(2 n-1)}$ के प्रसार का दोगुना है।


12. $m$ का सकारात्मक मान ज्ञात कीजिए जिसके लिए $(1+x)^{m}$ के विस्तार में $x^{2}$ का गुणांक 6 है।

उत्तर : $(1+x)^{m}$ लिखा जा सकता है ${ }_{r}^{m} C x^{r}$

$T_{3}=T_{2+1}={ }_{2}^{m} C x^{2}$

इसलिये $x^{2}$ का गुणांक है ${ }_{2} C=\dfrac{m !}{2 !(m-2) !}=\dfrac{m(m-1)}{2}$

प्रश्र के अनुसार $\dfrac{m(m-1)}{2}=6$

$m^{2}-m=12$

$m^{2}-m-12=0$

$m^{2}-4 m+3 m-12=0$

$(m-4)(m+3)=0$

m=-3,4

चंकि $m$ एक धनात्मक पूर्णांक है, इसलिए $m \neq-3$

इसलिए $m=4$


प्रश्नावली $A 8$

1. यदि $(a+b)^{n}$ के प्रसार में प्रथम तौन पद क्रमश: 729,7290 तथा 30375 हों तो $a, b$ और $n$ ज्ञात कीजिए।

उत्तर : यह ज्ञात है कि $(r+1)$ टर्म, $\left(T_{r+1}\right),(a+b)^{n}$ के द्विपद विस्तार के द्वारा

$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{r} \mathrm{a}^{\mathrm{n-t}} \mathrm{b}^{\mathrm{r}}$

पहले तीन पद क्रमशः 729,30375 और 7290 के रूप में दिए गए हैं। इसलिए हमने प्राप्त किया

$T_{2}={ }^{n} C_{2} a^{n-2} b^{2}=\dfrac{n(n-1)}{2} a^{n-2} b^{2}=30375 \ldots . .(3)$

(2) को (1) से विभाजित करके हमे प्राप्त हुआ

$\dfrac{n a^{n-1} b}{a^{n}}=\dfrac{7290}{729}$

$\Rightarrow \dfrac{n b}{a}=10 \ldots \ldots$

(3) को (2) से विभाजित करके हमे प्राप्त हुआ

$\Rightarrow \dfrac{n(n-1) a^{n-2} b^{2}}{2 n a^{n-1} b}=\dfrac{30375}{7290}$

$\Rightarrow \dfrac{n(n-1) b}{2 a}=\dfrac{30375}{7290}$

$\Rightarrow \dfrac{(n-1) b}{a}=\dfrac{30375 * 2}{7290}=\dfrac{25}{3}$

$\Rightarrow \dfrac{n b}{a}=\dfrac{b}{a}=\dfrac{23}{3}$

$\Rightarrow 10-\dfrac{b}{a}=\dfrac{25}{3}$

$\Rightarrow \dfrac{b}{a}=10-\dfrac{25}{3}=\dfrac{5}{3}$

(4) और (5) हमे प्राप्त हुआ

$\dfrac{n 5}{3}=10$

$\Rightarrow n=6$

$n=6$ को (1) में रखकर हमे प्राप्त हुआ $a^{6}$

$=739$ $\Rightarrow a=\sqrt[6]{729}=3$


2. यदि $(3+a x)^{9}$ के प्रसार में $x^{3}$ तथा के गुणांक समान हों, $a$ का मान ज्ञात कीजिए।

उत्तर : यह ज्ञात है कि $(\mathrm{r}+1)^{\operatorname{th}}$ पद, $\left(T_{r+1}\right),(a+b)^{n}$ के द्विपद विस्तार के द्वारा दिया जाता है

$T_{r+1}={ }^{n} C_{r} d^{-\tau} b^{\prime}$

यह मानते हुए कि $x^{2},(r+1)^{\hbar},(3+c x)^{9}$ के विस्तार में होता है, हम प्राप्त करते हैं

$\mathrm{T}_{t+1}={ }^{n} \mathrm{C}_{r}(3)^{2 r}(\mathrm{ax})^{r}={ }^{n} \mathrm{C}_{r}(3)^{-1-1}\left(\mathrm{a}^{\mathrm{T}} \mathrm{x}^{\prime}\right)$

$x^{2}$ और $\mathrm{T}_{\mathrm{r}+1}$ में हम $\mathrm{x}$ के सूचकांकों की तुलना करते हैं $\mathrm{r}=2$

इस प्रकार, $x^{2}$ का गुणांक है

${ }^{9} C_{2}(3)^{9-2} a^{2}=\dfrac{9 !}{2 ! 7 !}(3)^{7} a^{2}=36(3)^{7} a^{2}$

मान लें कि $(3+a x)^{9}$ के विस्तार में $x^{2},(k+1)^{\|}$ टर्म होता है, तो हम प्राप्त करते हैं

$T_{k+1}={ }^{n} C_{k}(3)^{9-k}(a x)^{k}={ }^{n} C_{k}(3)^{9-k}\left(d x^{\prime}\right)$

$x^{3}$ और $T_{k+1}$ में $x$ के सूचकांकों की तुलना में, हम $k=3$ प्राप्त करते हैं इस प्रकार, $x^{3}$ का गुणांक है

${ }^{9} C_{3}(3)^{n-3} a^{3}=\dfrac{9 !}{3 ! 6 !}(3)^{6} a^{3}=84(3)^{6} a^{3}$

यह दिया है कि $x^{2}$ और $x^{3}$ का गुणांक समान है

$84(3)^{6} a^{3}=36(3)^{7} a^{2}$

$\Rightarrow 84 a=36^{\prime} 3$

$\Rightarrow a=\dfrac{36^{*} 3}{84}=\dfrac{104}{84}$

$\Rightarrow a=\dfrac{9}{7}$


3. द्विपद प्रमेय का उपयोग करते हुए गुणनफल $(1+2 x)^{6}(1-x)^{7}$ में $\mathrm{x}^{5}$ का गुणांक ज्ञात कीजिए।

उत्तर : द्विपद प्रमेय का उपयोग करते हुए $(1+2 x)^{6}$ और $(1-x)^{7}$ अभिव्यक्ति का विस्तार किया जा सकता है:

$(1+2 x)^{6}={ }^{6} C_{0}+{ }^{6} C_{1} 2 x+{ }^{6} C_{2}(2 x)^{2}+{ }^{6} C_{3}(2 x)^{3}+{ }^{6} C_{4}(2 x)^{4}+{ }^{6} C_{5}(2 x)^{5}+{ }^{6} C_{6}(2 x)^{6}$

$\Rightarrow 1+6(2 x)+15(2 x)^{2}+20(2 x)^{3}+15(2 x)^{4}+6(2 x)^{5}+(2 x)^{6}$

$\Rightarrow 1+12 x^{2}+60 x^{2}+160 x^{2}+240 x^{2}+192 x^{2}+64 x^{2}$

$(1-x)^{7}=C_{0}-^{7} C_{1} x+^{7} C_{2}(x)^{2}-C_{3}(x)^{3}+^{7} C_{4}(x)^{4}-{ }^{7} C_{5}(x)^{5}+{ }^{7} C_{6}(x)^{6}-7 C_{7}(x)^{7}$

$\Rightarrow 1-7 x+21 x^{2}-35 x^{3}+35 x^{4}-21 x^{5}+7 x^{6}-x^{7}$

$\Rightarrow \therefore(1+2 x)^{6}(1-x)^{7}$

$\Rightarrow\left(1+12 x+60 x^{2}+160 x^{2}+240 x^{4}+192 x^{5}+64 x^{6}\right)\left(1-7 x+21 x^{2}-35 x^{3}+35 x^{4}-21 x^{5}+7 x^{6}-x^{7}\right)$

दो ब्रेकेट के पूर्ण गुणा को बाहर ले जाने की आवश्यकता नहीं है। केवल $x^{5}$ के टर्म, को शामिल करना आवश्यक है

$x^{5}$ वाले शब्द

$1\left(-21 x^{5}\right)+(12 x)\left(35 x^{4}\right)+\left(60 x^{2}\right)\left(-35 x^{3}\right)+\left(160 x^{3}\right)\left(21 x^{2}\right)+\left(240 x^{4}\right)(-7 x)+\left(192 x^{5}\right)(1)$

$=171 x^{5}$

इस प्रकार दिए गए उत्पाद में $x^{5}$ का गुणांक 171 है।


4. यदि $a$ और $b$ भित्न-भित्र पूर्णांक हों, तो सिद्ध कीजिए कि $\mathbf{\left(a^{n}-b^{n}\right)}$ का एक गुणनखंड $(a-b)$ है, जबकि $n$ एक धन पूर्णां है।

संकेत $a^{n}=(a-b+b)^{n}$ लिखकर प्रसार कीजिए।

उत्तर: यह साबित करने के लिए कि $(a-b)$ एक कारक है $\left(a^{n}-b^{n}\right)$, यह साबित करना होगा कि $a^{n}-b^{n}=k(a-b)$, जहाँ $k$ कुछ प्राकृतिक संख्या है।

$\Rightarrow \therefore a^{n}=(a-b+b)^{n}=[(a-b)+b]^{n}$

$\Rightarrow\mathrm{n}_{\mathrm{C}_{0}}(a-b)^{\mathrm{n}}+\mathrm{n}_{\mathrm{c},}(a-b)^{n-1}+\ldots \ldots \ldots .+\mathrm{n}_{\mathrm{C}_{-1}}(a-b) b^{k-1}+\mathrm{n}_{c} b^{n}$

$\Rightarrow(a-b)^{n}+n_{C_{1}}(a-b)^{n-1} b+\ldots \ldots+n_{C_{M}}(a-b) b^{n-1}+b^{n}$

$\Rightarrow a^{n}-b^{n}=(a-b)\left[(a-b)^{n-1}+\mathrm{n}_{c_{1}}(\mathrm{a}-\mathrm{b})^{n-2} \mathrm{~b}+\ldots \ldots \ldots+\mathrm{n}_{\mathrm{C}} \mathrm{b}^{\mathrm{n}-1}\right.$

$\Rightarrow d^{r}-b^{n}=k(a-b)$

जहाँ $\mathrm{k}=\left[(a-b)^{n-1}+\mathrm{n}_{c_{c}}(\mathrm{a}-\mathrm{b})^{\mathrm{n}-2} \mathrm{~b}+\ldots \ldots \ldots+\mathrm{n}_{c_{-1}} \mathrm{~b}^{\mathrm{n}-1}\right.$ एक प्राकृतिक संख्या है इससे पता चलता है कि $(a-b)$ एक कारक है $\left(a^{n}-b^{n}\right)$, जहां $n$ एक सकारात्मक पूर्णांक है।


5. $\mathbf{(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}}$ का मान ज्ञात कीजिए।

उत्तर : सबसे पहले, द्विपद प्रमेय का उपयोग करके अभिव्यक्ति $(a+b)^{6}-(a b)^{6}$ को सरल किया जाता है। यह किया जा सकता है

$(a+b)^{6}={ }^{6} C_{0} d^{6}+{ }^{6} C_{1} a^{i} b+{ }^{6} C_{2} a^{4}(b)^{2}+{ }^{6} C_{3} a^{3}(b)^{3}+{ }^{6} C_{4} a^{2}(b)^{4}+{ }^{6} C_{5} a^{1}(b)^{5}+{ }^{6} C_{6}(b)^{6}$

$\Rightarrow d^{6}+6 a^{\prime} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{5}$

$\Rightarrow a^{6}-6 a^{\prime} b+15 a^{4} b^{2}-20 a^{3} b^{3}+15 a^{2} b^{4}-6 a b^{5}+b^{5}(a-b)^{6}={ }^{6} C_{0} a^{6}-{ }^{6} C_{1} a^{i} b+{ }^{6} C_{2} a^{4}(b)^{2}$

$-{ }^{6} C_{3} a^{3}(b)^{3}+{ }^{6} C_{4} a^{2}(b)^{4}-{ }^{6} C_{5} d(b)^{5}+{ }^{6} C_{6}(b)^{6} $

$\Rightarrow(a+b)^{6}-(a-b)^{6}=2\left[6 a^{i} b+20 a^{3} b^{3}+6 a b^{5}\right]$

$a=\sqrt{3} ; b=\sqrt{2}$ हम प्राप्त करते हैं

$\Rightarrow(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}=2\left[6 \sqrt{3}^{5} \sqrt{2}+20 \sqrt{3} \sqrt{2}^{3}+6 \sqrt{3} \sqrt{2}^{5}\right]$

$\Rightarrow 2[54 \sqrt{6}+120 \sqrt{6}+24 \sqrt{6}]$

$\Rightarrow 2 \cdot 198 \sqrt{6}$

 $\Rightarrow 396 \sqrt{6}$


6.$\mathbf{\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}}$ का मान ज्ञात कीजिए।

उत्तर : सबसे पहले, द्विपद प्रमेय का उपयोग करके अभिव्यक्ति $(x+y)^{4}-(x-y)^{4}$ को सरल किया जाता है। यह किया जा सकता है:

$(x+y)^{4}={ }^{4} C_{0} x^{4}+{ }^{4} C_{1} x^{3} y+{ }^{4} C_{2} x^{2}(y)^{2}+{ }^{4} C_{3} x^{1}(y)^{3}+{ }^{4} C_{4} x^{0}(y)^{4}$

$\Rightarrow x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}(x-y)^{4}={ }^{4} C_{0} x^{4}-{ }^{4} C_{1} x^{3} y+{ }^{4} C_{2} x^{2}(y)^{2}-{ }^{4} C_{3} x^{1}(y)^{3}+{ }^{4} C_{4} x^{0}(y)^{4}$

$\Rightarrow x^{4}-4 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4}(x+y)^{4}+(x-y)^{4}=2\left[x^{4}+6 x^{2} y^{2}+y^{4}\right]$

$x=a^{2} \quad y=\sqrt{a^{2}-1}$ हम प्राप्त करते हैं

$\Rightarrow\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}=2\left[\left(a^{2}\right)^{4}+6\left(a^{2}\right)^{2}\left(\sqrt{a^{2}-1}\right)^{2}+\left(\sqrt{a^{2}-1}\right)^{4}\right.$

$\Rightarrow 2\left[a^{8}+6 a^{4}\left(a^{2}-1\right)+\left(a^{2}-1\right)^{2}\right]$

$\Rightarrow 2\left[a^{8}+6 a^{6}-6 a^{4}+a^{4}-2 a^{2}+1\right]$

$\Rightarrow 2\left[a^{8}+6 a^{6}-5 a^{4}-2 a^{2}+1\right]$

$\Rightarrow\left[2 a^{8}+12 a^{6}-10 a^{4}-4 a^{2}+2\right]$


7. $(0.99)^{5}$ के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।

उत्तर : $0.99=1-0.01$

$\Rightarrow \therefore(0.99)^{5}=(1-0.01)^{5}$

$\Rightarrow^{5} C_{0} 1^{5}-{ }^{5} C_{1} 1^{4}(0.01)+^{5} C_{2} 1^{3}(0.01)^{2}$

$\Rightarrow 1-5(0.01)+10(0.01)^{2}$

$\Rightarrow 1-0.05+0.001$

$\Rightarrow 1.001-0.05$

$\Rightarrow 0.951$

इस प्रकार $(0.99)^{s}$ का मान लगभग $0.951$ है।


8. यदि $\left(\sqrt[4]{2}+\dfrac{1}{\sqrt{3}}\right)^{n}$ के प्रसार में आरंभ से 5 वें और अंत से 5 वें पद का अनुपात $\sqrt{6}: 1$ हो तो $n$ ज्ञात कीजिए।

उत्तर : विस्तार

$(a+b)^{n}=^{n} C_{0} d^{2}+{ }^{n} C_{1} d^{(n-1)} b+{ }^{n} C_{2} d^{n-2)}(b)^{2}+{ }^{n} C_{3} d^{(n-3)}(b)^{3}++^{n} C_{(n-1)} a(b)^{(n-2)}+{ }^{n} C_{n} b^{n}$ में शुरुआत से पांचवां कार्यकाल $={ }^{n} C_{4} a^{-4} b^{4}$

अंत से पांचवां कार्यकाल $={ }^{n} C_{4} a^{4} b^{n-4}$

इसलिए यह स्पष्ट है कि $\left(\sqrt[4]{2}+\dfrac{1}{\sqrt{3}}\right)^{n}$ के विस्तार में शुरुआत से पांचवां शब्द है और अंत से पांचवां शब्द है,

$C_{n-4}(\sqrt[4]{2})^{4}\left(\dfrac{1}{\sqrt{3}}\right)^{n-4 n}$

$C_{4}(\sqrt[4]{2})^{n-4}\left(\dfrac{1}{\sqrt{3}}\right)^{4}=^{n} C_{4}$ $\dfrac{(\sqrt[4]{2})^{n}}{(\sqrt[4]{2})^{4}}-\dfrac{1}{3}$

$=\dfrac{n !}{6.4 !(n-4) !}(\sqrt[4]{2})^{\pi} \ldots \ldots . . .(1)$

${ }^{n} C_{n-4}(\sqrt[4]{2})^{4}\left(\dfrac{1}{\sqrt{3}}\right)^{n-4}={ }^{n} C_{4} \dfrac{(\sqrt[4]{3})^{n}}{(\sqrt[4]{3})^{4}}={ }^{n} C_{n-4} \dfrac{23}{(\sqrt[4]{3})^{4}}=$

$\dfrac{6 n !}{(n-4) ! 4 ! !} \cdot \dfrac{1}{(\sqrt[4]{3})^{n}}$

यह दिया जाता है कि पांचवें शब्द का प्रारंभ से अंत तक पांचवें शब्द का अनुपात है $\sqrt{6}: 1$ इसलिए, (1) और (2) से, हम प्राप्त करते हैं:

$\Rightarrow \dfrac{n !}{6.4 !(n-4) !}(\sqrt[4]{2})^{n}: \dfrac{6n!}{(n-4) ! 4 !} \cdot \dfrac{1}{(\sqrt[4]{3})^{n}}=\sqrt{6}: 1$

$\Rightarrow \dfrac{(\sqrt{2})^{n}}{6}: \dfrac{6}{(\sqrt[4]{3})^{n}}=\sqrt{6}: 1$

$\Rightarrow \dfrac{(\sqrt{4}{2})^{n}}{6} \times \dfrac{(\sqrt{3}{3})^{n}}{6}=\sqrt{6}$

$\Rightarrow(\sqrt[4]{6})^{n}=36 \sqrt{6}$

$\Rightarrow 6^{\dfrac{\pi}{4}}=6^{\dfrac{5}{2}} $

$\Rightarrow \dfrac{n}{4}=\dfrac{5}{2} $

$\Rightarrow n=\dfrac{4 x 5}{2}=10$

इस प्रकार, $n$ का मान 10 है।


9. $\left(1+\dfrac{x}{2}-\dfrac{2}{x}\right)^{4} \mathrm{x} \neq 0$ का द्विपद प्रमेय द्वारा प्रसार ज्ञात कीजिए।

उत्तर : $\left(1+\dfrac{x}{2}-\dfrac{2}{x}\right)^{4} \mathrm{x} \neq 0$

$\Rightarrow ^{n} C_{0}\left(1+\dfrac{x}{2}\right)^{4}\left(\dfrac{2}{x}\right)^{0}+{ }^{n} C_{1}\left(1+\dfrac{x}{2}\right)^{3}\left(\dfrac{2}{x}\right)^{1}+{ }^{1} C_{2}\left(1+\dfrac{x}{2}\right)^{2}\left(\dfrac{2}{x}\right)^{2}+{ }^{n} C_{3}\left(1+\dfrac{x}{2}\right)^{1}\left(\dfrac{2}{x}\right)^{3}+{ }^{n} C_{n}\left(1+\dfrac{x}{2}\right)^{0}\left(\dfrac{2}{x}\right)^{4}$

$\Rightarrow \left(1+\dfrac{x}{2}\right)^{4}-4\left(1+\dfrac{x}{2}\right)^{3}\left(\dfrac{2}{x}\right)+6\left(1+x+\dfrac{x^{2}}{4}\right)\left(\dfrac{4}{x^{2}}\right)-4\left(1+\dfrac{x}{2}\right)\left(\dfrac{8}{x^{3}}\right)+\dfrac{16}{x^{4}}$

$\Rightarrow \left(1+\dfrac{x}{2}\right)^{4}-\dfrac{8}{x}\left(1+\dfrac{x}{2}\right)^{3}+\dfrac{24}{x^{2}}+\dfrac{24}{x}+6-\dfrac{32}{x^{3}}-\dfrac{16}{x^{2}}+\dfrac{16}{x^{4}}$

$\Rightarrow \left(1+\dfrac{x}{2}\right)^{4}-\dfrac{8}{x}\left(1+\dfrac{x}{2}\right)^{3}+\dfrac{8}{x^{2}}+\dfrac{24}{x}+6-\dfrac{32}{x^{3}}+\dfrac{16}{x^{4}} \cdots \ldots \ldots(1)$

फिर से द्विपद प्रमेय का उपयोग करके हम प्राप्त करते हैं

$\left(1+\dfrac{x}{2}\right)^{4}={ }^{4} C_{0} 1^{4}+{ }^{4} C_{1} 1^{3}\left(\dfrac{x}{2}\right)+{ }^{4} C_{2} 1^{2}\left(\dfrac{x}{2}\right)^{2}+{ }^{4} C_{3} 1^{1}\left(\dfrac{x}{2}\right)^{3}+{ }^{4} C_{4}\left(\dfrac{x}{2}\right)^{4}$

$\Rightarrow 1+4 * \dfrac{x}{2}+6 * \dfrac{x^{2}}{4}+4 * \dfrac{x^{3}}{8}+\dfrac{x^{4}}{16} $

$\Rightarrow 1+2 x+\dfrac{3 x^{2}}{2}+\dfrac{x^{3}}{2}+\dfrac{x^{4}}{16} \ldots \ldots . . .(2)$

$\Rightarrow \left(1+\dfrac{x}{2}\right)^{3}={ }^{3} C_{0} 1^{3}+{ }^{3} C_{1} 1^{3}\left(\dfrac{x}{2}\right)+{ }^{3} C_{2} 1^{2}\left(\dfrac{x}{2}\right)^{2}+{ }^{3} C_{3} 1^{1}\left(\dfrac{x}{2}\right)^{3}$

$\Rightarrow 1+\dfrac{3 x}{2}+\dfrac{3 x^{2}}{4}+\dfrac{x^{3}}{8} \cdots \ldots . .(3)$

(1), (2) और (3) से हम प्राप्त करते हैं

$\Rightarrow \left(\left(1+\dfrac{x}{2}\right)-\dfrac{2}{x}\right)^{4}$

$\Rightarrow 1+2x+\dfrac{3x^{2}}{2}+\dfrac{x^{3}}{2}+\dfrac{x^{4}}{16}-\dfrac{8}{x}\left(1+\dfrac{3x}{2}+\dfrac{3x^{2}}{4}+\dfrac{x^{3}}{8}\right)+\dfrac{8}{x^{2}}+\dfrac{24}{x}+6-\dfrac{32}{x^{3}}+\dfrac{16}{x^{4}}$

$\Rightarrow 1+2x+\dfrac{3 x^{2}}{2}+\dfrac{x^{3}}{2}+\dfrac{x^{4}}{16}-\dfrac{8}{x}-12-6 x-x^{2}+\dfrac{8}{x^{2}}+\dfrac{24}{x}+6-\dfrac{32}{x^{3}}+\dfrac{16}{x^{4}}$

$\Rightarrow \dfrac{16}{x}+\dfrac{8}{x^{2}}-\dfrac{32}{x^{3}}+\dfrac{16}{x^{4}}-4 x+\dfrac{x^{2}}{2}+\dfrac{x^{3}}{2}+\dfrac{x^{4}}{16}-5$


10. $\left(3 \mathrm{x}^{2}-2 \mathrm{ax}+3 \mathrm{a}^{2}\right)^{3}$ का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।

उत्तर : द्विपद प्रमेय का उपयोग करते हुए, दी गई अभिव्यक्ति $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ को $\left[\left(3 x^{2}-2 a x\right)+3 a^{2}\right]^{3}$ रूप में विस्तारित किया जा सकता है

$\Rightarrow^{3} C_{0}\left(3 x^{2}-2 c x\right)^{3}+{ }^{3} C_{1}\left(3 x^{2}-2 a x\right)^{2}\left(3 a^{2}\right)+{ }^{3} C_{2}\left(3 x^{2}-2 c x\right)^{1}\left(3 a^{2}\right)^{2}+{ }^{3} C_{3}\left(3 a^{2}\right)^{3}$

$\Rightarrow \left(3 x^{2}-2 c x\right)^{3}+3\left(9 x^{4}-12 c x^{3}+4 a^{2} x^{2}\right)\left(3 a^{2}\right)+3\left(3 x^{2}-2 a x\right)\left(3 a^{2}\right)+27 a^{6}$

$\Rightarrow \left(3 x^{2}-2 c x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+36 a^{4} x^{2}+81 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

$\Rightarrow \left(3 x^{2}-2 c x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

फिर से द्विपद प्रमेय का उपयोग करके हम प्राप्त करते हैं

$\Rightarrow ^{3} C_{0}\left(3 x^{2}\right)^{3}+{ }^{3} C_{1}\left(3 x^{2}\right)^{2}(2 a x)+{ }^{3} C_{2}\left(3 x^{2}\right)^{1}(2 c x)^{2}+{ }^{3} C_{3}(2 a x)^{3}$

$\Rightarrow 27 x^{6}-3\left(9 x^{4}\right)(2 c x)+3\left(3 x^{2}\right)\left(4 a^{2} x^{2}\right)-8 a^{3} x^{3}$

$\Rightarrow 27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}$

1 और 2 से हम प्राप्त करते हैं

$\left(3 x^{2}-2 c x+3 a^{2}\right)^{3}$

$\Rightarrow 27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

$\Rightarrow 27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$


NCERT Solutions for Class 11 Maths Chapter 8 Binomial Theorem in Hindi

Chapter-wise NCERT Solutions are provided everywhere on the internet with an aim to help the students to gain a comprehensive understanding. Class 11 Maths Chapter 8 solution Hindi mediums are created by our in-house experts keeping the understanding ability of all types of candidates in mind. NCERT textbooks and solutions are built to give a strong foundation to every concept. These NCERT Solutions for Class 11 Maths Chapter 8 in Hindi ensure a smooth understanding of all the concepts including the advanced concepts covered in the textbook.


NCERT Solutions for Class 11 Maths Chapter 8 in Hindi medium PDF download are easily available on our official website (vedantu.com). Upon visiting the website, you have to register on the website with your phone number and email address. Then you will be able to download all the study materials of your preference in a click. You can also download the Class 11 Maths Binomial Theorem solution Hindi medium from Vedantu app as well by following the similar procedures, but you have to download the app from Google play store before doing that.


NCERT Solutions in Hindi medium have been created keeping those students in mind who are studying in a Hindi medium school. These NCERT Solutions for Class 11 Maths Binomial Theorem in Hindi medium pdf download have innumerable benefits as these are created in simple and easy-to-understand language. The best feature of these solutions is a free download option. Students of Class 11 can download these solutions at any time as per their convenience for self-study purpose.


These solutions are nothing but a compilation of all the answers to the questions of the textbook exercises. The answers/ solutions are given in a stepwise format and very well researched by the subject matter experts who have relevant experience in this field. Relevant diagrams, graphs, illustrations are provided along with the answers wherever required. In nutshell, NCERT Solutions for Class 11 Maths in Hindi come really handy in exam preparation and quick revision as well prior to the final examinations.

WhatsApp Banner

FAQs on NCERT Solutions For Class 11 Maths Chapter 8 Binomial Theorem in Hindi - 2025-26

1. Where can I find reliable, step-by-step NCERT Solutions for Class 11 Maths Chapter 8, Binomial Theorem?

You can find comprehensive and accurate NCERT Solutions for Class 11 Maths Chapter 8, Binomial Theorem, right here on this Vedantu page. Our solutions are crafted by expert teachers and follow the CBSE 2025-26 guidelines. Each solution provides a detailed, step-by-step method to ensure you understand the logic behind solving every problem in the textbook exercises.

2. What is the correct method to solve problems from the Miscellaneous Exercise of Binomial Theorem?

The Miscellaneous Exercise often contains higher-order thinking skills (HOTS) questions. The correct method, as shown in our NCERT solutions, involves a deeper application of concepts. Key steps include:

  • Identifying which form of the binomial expansion to use, such as (a + b)ⁿ or (1 + x)ⁿ.
  • Applying the properties of binomial coefficients (like ⁿCᵣ = ⁿCₙ₋ᵣ).
  • Using the general term formula, Tᵣ₊₁ = ⁿCᵣ aⁿ⁻ᵣ bᵣ, to find specific terms or coefficients.
  • For proof-based questions, expanding and manipulating both sides of the equation is often required.

3. Why is the general term in a binomial expansion written as Tᵣ₊₁ and not Tᵣ in the NCERT solutions?

This is a crucial concept for avoiding errors. The general term is written as Tᵣ₊₁ because the binomial expansion starts with a power of 'r' as 0 for the first term. For example, in the expansion of (a + b)ⁿ:

  • The first term (T₁) has b⁰, where r = 0.
  • The second term (T₂) has b¹, where r = 1.
  • The third term (T₃) has b², where r = 2.

Therefore, the (r+1)th term contains bʳ. This notation ensures that the term number directly corresponds to the value of 'r' in the formula ⁿCᵣ aⁿ⁻ᵣ bᵣ, which simplifies calculations and prevents off-by-one errors.

4. How do the NCERT Solutions explain finding the middle term in the expansion of (x + a)ⁿ?

The NCERT solution methodology for finding the middle term depends on whether 'n' is even or odd.

  • If n is even, there is only one middle term, which is the (n/2 + 1)th term.
  • If n is odd, there are two middle terms: the ((n+1)/2)th term and the ((n+1)/2 + 1)th term.
Our solutions demonstrate how to first determine the position of the middle term(s) and then use the general term formula (Tᵣ₊₁) to calculate their values.

5. What is the most common mistake students make when solving for a specific coefficient in the Binomial Theorem?

A very common mistake is confusing the term's position with the value of 'r'. For instance, when asked to find the 5th term, many students incorrectly substitute r = 5 into the general term formula. The correct approach, as demonstrated in our NCERT solutions, is to use the relationship Term = r + 1. Therefore, for the 5th term, you must substitute r = 4 into the formula Tᵣ₊₁ = ⁿCᵣ aⁿ⁻ᵣ bᵣ.

6. How are NCERT Solutions for Chapter 8 useful beyond just solving textbook questions?

While they are designed for textbook exercises, the problem-solving methods in these solutions build a strong foundation. Understanding the step-by-step process helps in:

  • Tackling complex problems, such as finding remainders or proving divisibility using the binomial theorem.
  • Applying the theorem to problems of approximation, like finding the value of (1.01)⁵.
  • Building the logical thinking required for competitive exams like JEE, where binomial applications are frequently tested.

7. How do NCERT Solutions show the use of Pascal's Triangle in Chapter 8?

The NCERT textbook introduces Pascal's Triangle as a visual and intuitive way to find binomial coefficients for small positive integral indices. The solutions apply this by showing that the coefficients in the expansion of (a+b)ⁿ correspond to the numbers in the (n+1)th row of the triangle. For example, for (a+b)⁴, the coefficients 1, 4, 6, 4, 1 are taken directly from the 5th row of Pascal's Triangle. This method is highlighted for its simplicity when 'n' is small.