NCERT Solutions for Class 12 Maths Chapter 3 Matrices Exercise 3.2 - Free PDF Download
The NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.2 Matrices provides complete solutions to the problems in the Exercise. These NCERT Solutions are intended to assist students with the CBSE Class 12 board examination.


Students should thoroughly study this NCERT solution in order to solve all types of questions based on arithmetic progression. By completing these practice questions with the NCERT Maths Solutions Chapter 3 Exercise 3.2 Class 12, you will be better prepared to understand all of the different types of questions that may be asked in the Class 12 board exams.
Glance on NCERT Solutions for Exercise 3.2 Class 12 Maths Chapter 3
The NCERT Solutions for Maths Class 12 Ex 3.2 focus on solidifying your understanding of arithmetic operations on matrices.
In Class 12 Ex 3.2 there are overall 22 Questions with 3 Short Answers and 19 Long Answers
This exercise likely covers addition, subtraction, multiplication by a scalar, and potentially matrix multiplication.
Remember the properties that hold true for these operations, such as commutativity, associativity, and distributive property (for matrix addition and scalar multiplication).
There are problems related to finding the transpose of a matrix and solving systems of linear equations using matrices
Topics Covered in Class 12 Maths Chapter 3 Exercise 3.2
Operations on Matrices
Addition and subtraction of matrices
Multiplication of a matrix by scalar
Properties of matrix addition and scalar multiplication
Commutativity
Associativity
Distributive property
Existence of additive identity and inverse.
Multiplication of matrices
Properties of multiplication of matrices
Access NCERT Solutions for Class 12 Maths Chapter 3 - Matrices
Exercise 3.2
1. Let $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right], C=\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$
Find each of the following
i. $\mathbf{A}+\mathbf{B}$
Ans: Adding the matrices
$\mathrm{A}+\mathrm{B}=\left[\begin{array}{ll} 2 & 4 \\3 & 2\end{array}\right]+\left[\begin{array}{cc} 1 & 3 \\-2 & 5\end{array}\right]=\left[\begin{array}{ll} 3 & 7 \\1 & 7 \end{array}\right] $
ii. $\mathbf{A}-\mathbf{B}$
Ans: Subtracting the matrices
$A-B=\left[\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right]-\left[\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right]=\left[\begin{array}{cc} 1 & 1 \\ 5 & -3 \end{array}\right] $
iii. $\mathbf{3 A}-\mathbf{C}$
Ans: Subtracting the matrices
$\begin{aligned} &3 \mathrm{~A}-\mathrm{C}=3\left[\begin{array}{cc} 2 & 4 \\
3 & 2 \end{array}\right]-\left[\begin{array}{cc} -2 & 5 \\ 3 & 4 \end{array}\right] \\
&{\left[\begin{array}{cc} 6 & 12 \\ 9 & 6 \end{array}\right]-\left[\begin{array}{cc} -2 & 5 \\3 & 4 \end{array}\right]=\left[\begin{array}{cc} 8 & 7 \\ 6 & 2 \end{array}\right]} \end{aligned}$
iv. AB
Ans: Matrix A has 2 columns. This number is equal to the number of rows in matrix B. Therefore, AB is defined as:
$\begin{aligned} &\mathrm{AB}=\left[\begin{array}{cc} 2 & 4 \\ 3 & 2\end{array}\right]\left[\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right] \\
&{\left[\begin{array}{ll} 2(1)+4(-2) & 2(3)+4(5) \\ 3(1)+2(-2) & 3(3)+2(5) \end{array}\right]=\left[\begin{array}{cc} -6 & 26 \\ 1 & 19\end{array}\right]}
\end{aligned} $
2. Compute the following:
i. $\left[\begin{array}{cc}\mathbf{a} & \mathbf{b} \\ -\mathbf{b} & \mathbf{a}\end{array}\right]+\left[\begin{array}{ll}\mathbf{a} & \mathbf{b} \\ \mathbf{b} & \mathbf{a}\end{array}\right]$
Ans: Computing,
$\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]+\left[\begin{array}{cc}a & b \\ b & a\end{array}\right]=\left[\begin{array}{cc}2 a & 2 b \\ 0 & 2 a\end{array}\right]$
ii. $\left[\begin{array}{cc}a^{2}+b^{2} & b^{2}+c^{2} \\ a^{2}+c^{2} & a^{2}+b^{2}\end{array}\right]+\left[\begin{array}{cc}2 a b & 2 b c \\ -2 a c & -2 a b\end{array}\right]$
Ans: Computing,
$ \begin{aligned} &{\left[\begin{array}{cc} a^{2}+b^{2} & b^{2}+c^{2} \\ a^{2}+c^{2} & a^{2}+b^{2} \end{array}\right]+\left[\begin{array}{cc} 2 a b & 2 b c \\ -2 a c & -2 a b \end{array}\right]=\left[\begin{array}{cc} a^{2}+b^{2}+2 a b & b^{2}+c^{2}+2 b c \\
a^{2}+c^{2}-2 a c & a^{2}+b^{2}-2 a b \end{array}\right]} \\
&{\left[\begin{array}{ll} a^{2}+b^{2}+2 a b & b^{2}+c^{2}+2 b c \\
a^{2}+c^{2}-2 a c & a^{2}+b^{2}-2 a b \end{array}\right]=\left[\begin{array}{ll} (a+b)^{2} & (b+c)^{2} \\ (a-c)^{2} & (a-b)^{2} \end{array}\right]}
\end{aligned}$
iii. $\left[\begin{array}{ccc}-1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5\end{array}\right]+\left[\begin{array}{ccc}12 & 7 & 6 \\ 8 & 0 & 5 \\ 3 & 2 & 4\end{array}\right]$
Ans: Computing,
$ \left[\begin{array}{ccc} -1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5 \end{array}\right]+\left[\begin{array}{ccc} 12 & 7 & 6 \\
8 & 0 & 5 \\
3 & 2 & 4
\end{array}\right]=\left[\begin{array}{ccc}
11 & 11 & 0 \\
16 & 5 & 21 \\
5 & 10 & 9
\end{array}\right]
$
iv. $\left[\begin{array}{cc}\cos ^{2} x & \sin ^{2} x \\ \sin ^{2} x & \cos ^{2} x\end{array}\right]+\left[\begin{array}{cc}\sin ^{2} x & \cos ^{2} x \\ \cos ^{2} x & \sin ^{2} x\end{array}\right]$
Ans: Computing,
$
\begin{aligned}
&{\left[\begin{array}{cc}
\cos ^{2} x & \sin ^{2} x \\
\sin ^{2} x & \cos ^{2} x
\end{array}\right]+\left[\begin{array}{cc}
\sin ^{2} x & \cos ^{2} x \\
\cos ^{2} x & \sin ^{2} x
\end{array}\right]=\left[\begin{array}{cc}
\cos ^{2} x+\sin ^{2} x & \sin ^{2} x+\cos ^{2} x \\
\sin ^{2} x+\cos ^{2} x & \cos ^{2} x+\sin ^{2} x
\end{array}\right]} \\
&{\left[\begin{array}{ll}
\cos ^{2} x+\sin ^{2} x & \sin ^{2} x+\cos ^{2} x \\
\sin ^{2} x+\cos ^{2} x & \cos ^{2} x+\sin ^{2} x
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left(\because \sin ^{2} x+\cos ^{2} x=1\right)}
\end{aligned}
$
3. Compute the indicated products
i. $\left[\begin{array}{cc}\mathbf{a} & \mathbf{b} \\ -\mathbf{b} & \mathbf{a}\end{array}\right]\left[\begin{array}{cc}\mathbf{a} & -\mathbf{b} \\ \mathbf{b} & \mathbf{a}\end{array}\right]$
Ans: Given: $\left[\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ -\mathrm{b} & \mathrm{a}\end{array}\right]\left[\begin{array}{cc}\mathrm{a} & -\mathrm{b} \\ \mathrm{b} & \mathrm{a}\end{array}\right]$
$ \begin{aligned}
{\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] } &=\left[\begin{array}{cc}
a(a)+b(b) & a(-b)+a(b) \\
-b(a)+b(a) & -b(-b)+a(a)
\end{array}\right] \\
&=\left[\begin{array}{cc}
a^{2}+b^{2} & 0 \\
0 & a^{2}+b^{2}
\end{array}\right]
\end{aligned}
$
ii. $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$
Ans: Given: $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$
$\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]=\left[\begin{array}{lll}1(2) & 1(3) & 1(4) \\ 2(2) & 2(3) & 2(4) \\ 3(2) & 3(3) & 3(4)\end{array}\right]$
$ =\left[\begin{array}{ccc}
2 & 3 & 4 \\
4 & 6 & 8 \\
6 & 9 & 12
\end{array}\right] $
iii. $\left[\begin{array}{cc}1 & -2 \\ 2 & 3\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$
Ans: Given: $\left[\begin{array}{cc}1 & -2 \\ 2 & 3\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$
$ \begin{aligned}
{\left[\begin{array}{cc}
1 & -2 \\
2 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right] } &=\left[\begin{array}{lll}
1(1)-2(2) & 1(2)-2(3) & 1(3)-2(1) \\
2(1)+3(2) & 2(2)+3(3) & 2(3)+3(1)
\end{array}\right] \\
&=\left[\begin{array}{ccc}
-3 & -4 & 1 \\
8 & 13 & 9
\end{array}\right]
\end{aligned}$
iv. $\left[\begin{array}{lll}2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{ccc}1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5\end{array}\right]$
Ans: Given: $\left[\begin{array}{lll}2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{ccc}1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5\end{array}\right]$
$ \begin{aligned} {\left[\begin{array}{lll} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6
\end{array}\right]\left[\begin{array}{ccc} 1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5
\end{array}\right] } &=\left[\begin{array}{ccc}
2(1)+3(0)+4(3) & 2(-3)+3(2)+4(0) & 2(5)+3(4)+4(5) \\
3(1)+4(0)+5(3) & 3(-3)+4(2)+5(0) & 3(5)+4(4)+5(5) \\
4(1)+5(0)+6(3) & 4(-3)+5(2)+6(0) & 4(5)+5(4)+6(5)
\end{array}\right] \\
&=\left[\begin{array}{ccc}
14 & 0 & 42 \\
18 & -1 & 56 \\
22 & -2 & 70
\end{array}\right]
\end{aligned} $
v. $\left[\begin{array}{cc}2 & 1 \\ 3 & 2 \\ -1 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1\end{array}\right]$
Ans: Given: $\left[\begin{array}{cc}2 & 1 \\ 3 & 2 \\ -1 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1\end{array}\right]$
$
\begin{aligned}
{\left[\begin{array}{cc}
2 & 1 \\
3 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 2 & 1
\end{array}\right] } &=\left[\begin{array}{ccc}
2(1)+1(-1) & 2(0)+1(2) & 2(1)+1(1) \\
3(1)+2(-1) & 3(0)+2(2) & 3(1)+2(1) \\
-1(1)+1(-1) & -1(0)+1(2) & -1(1)+1(1)
\end{array}\right] \\
&=\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 4 & 5 \\
-2 & 2 & 0
\end{array}\right]
\end{aligned}$
vi. $\left[\begin{array}{ccc}3 & -1 & 3 \\ -1 & 0 & 2\end{array}\right]\left[\begin{array}{cc}2 & -3 \\ 1 & 0 \\ 3 & 1\end{array}\right]$
Ans: Given: $\left[\begin{array}{ccc}3 & -1 & 3 \\ -1 & 0 & 2\end{array}\right]\left[\begin{array}{cc}2 & -3 \\ 1 & 0 \\ 3 & 1\end{array}\right]$
\[\begin{aligned}
{\left[\begin{array}{ccc}
3 & -1 & 3 \\
-1 & 0 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -3 \\
1 & 0 \\
3 & 1
\end{array}\right] } &=\left[\begin{array}{cc}
3(2)-1(1)+3(3) & 3(-3)-1(0)+3(1) \\
-1(2)+0(1)+2(3) & -1(-3)+0(0)+2(1)
\end{array}\right] \\
&=\left[\begin{array}{cc}
14 & -6 \\
4 & 5
\end{array}\right]
\end{aligned}\]
4. If $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{ccc}3 & 1 & 2 \\ 4 & 3 & 5 \\ 2 & -2 & 3\end{array}\right]$ and $C=\left[\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right]$, then Compute $(A+B)$ and $(B-C)$. Also verify that $A+(B-C)=(A+B)-C$
Ans:
Computing $(\mathrm{A}+\mathrm{B})=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right]+\left[\begin{array}{ccc}3 & 1 & 2 \\ 4 & 3 & 5 \\ 2 & -2 & 3\end{array}\right]=\left[\begin{array}{ccc}4 & 1 & -1 \\ 9 & 2 & 7 \\ 3 & -1 & 4\end{array}\right]$
Computing $(B-C)=\left[\begin{array}{ccc}3 & 1 & 2 \\ 4 & 3 & 5 \\ 2 & -2 & 3\end{array}\right]-\left[\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right]=\left[\begin{array}{ccc}-1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & 2 & 0\end{array}\right]$
To verify $\mathrm{A}+(\mathrm{B}-\mathrm{C})=(\mathrm{A}+\mathrm{B})-\mathrm{C}$,
We calculate $\mathrm{A}+(\mathrm{B}-\mathrm{C})$ and $(\mathrm{A}+\mathrm{B})-\mathrm{C}$ first, and then check that $\mathrm{LHS}=\mathrm{RHS}$
Computing $A+(B-C)$
$ \left[\begin{array}{ccc}
1 & 2 & -3 \\
5 & 0 & 2 \\
1 & -1 & 1
\end{array}\right]+\left[\begin{array}{ccc}
-1 & -2 & 0 \\
4 & -1 & 3 \\
1 & 2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & -3 \\
9 & -1 & 5 \\
2 & 1 & 1
\end{array}\right] \text {, and } $
Computing $(A+B)-C$
$\left[\begin{array}{ccc}
4 & 1 & -1 \\
9 & 2 & 7 \\
3 & -1 & 4
\end{array}\right]-\left[\begin{array}{ccc}
4 & 1 & 2 \\
0 & 3 & 2 \\
1 & -2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & -3 \\
9 & -1 & 5 \\
2 & 1 & 1
\end{array}\right] $
Hence, we have verified that $A+(B-C)=(A+B)-C$.
5. If $\mathbf{A}=\left[\begin{array}{ccc}\frac{2}{3} & 1 & \frac{5}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3}\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ccc}\frac{2}{5} & \frac{3}{5} & 1 \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5}\end{array}\right]$ then calculate $\mathbf{3 A}-\mathbf{5}$
Ans: Evaluating $3 \mathrm{~A}-5 \mathrm{~B}$, ${\left[\begin{array}{ccc}\frac{2}{3} & 1 & \frac{5}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3}\end{array}\right]-5\left[\begin{array}{ccc}\frac{2}{5} & \frac{3}{5} & 1 \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5}\end{array}\right]=\left[\begin{array}{lll}2 & 3 & 5 \\ 1 & 2 & 4 \\ 7 & 6 & 2\end{array}\right]-\left[\begin{array}{lll}2 & 3 & 5 \\ 1 & 2 & 4 \\ 7 & 6 & 2\end{array}\right] }$
$=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]$
6. Simplify $\cos \theta\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]+\sin \theta\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$
Ans: Simplifying $\cos \theta\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]+\sin \theta\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$
$ \begin{aligned}
&\Rightarrow\left[\begin{array}{cc}
\cos ^{2} \theta & \cos \theta \sin \theta \\
-\sin \theta \cos \theta & \cos ^{2} \theta
\end{array}\right]+\left[\begin{array}{cc}
\sin ^{2} \theta & -\sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin ^{2} \theta
\end{array}\right] \\
&\Rightarrow\left[\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \theta-\sin \theta \cos \theta \\
-\sin \theta \cos \theta+\sin \theta \cos \theta & \cos ^{2} \theta+\sin ^{2} \theta
\end{array}\right]
\end{aligned} $
$ \Rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right) $
7. Find $\mathrm{X}$ and $\mathrm{Y}$, if
i. $\mathbf{X}+\mathbf{Y}=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$ and $\mathbf{X}-\mathbf{Y}=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
Ans: Given:
$ \begin{aligned}
&X+Y=\left[\begin{array}{ll}
7 & 0 \\
2 & 5
\end{array}\right] \ldots(1) \\
&X-Y=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] \ldots(2)
\end{aligned} $
Adding these two equations, we get
$ 2 X=\left[\begin{array}{ll}
7 & 0 \\
2 & 5
\end{array}\right]+\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] $
$ \begin{aligned}
&2 X=\left[\begin{array}{cc}
10 & 0 \\
2 & 8
\end{array}\right] \\
&X=\left[\begin{array}{ll}
5 & 0 \\
1 & 4
\end{array}\right]
\end{aligned} $
Putting $X$ in (1)
$ \begin{aligned}
&{\left[\begin{array}{ll}
5 & 0 \\
1 & 4
\end{array}\right]+Y=\left[\begin{array}{ll}
7 & 0 \\
2 & 5
\end{array}\right] Y=\left[\begin{array}{ll}
7-5 & 0-0 \\
2-1 & 5-4
\end{array}\right]} \\
&Y=\left[\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right]
\end{aligned} $
ii. $2 \mathrm{X}+3 \mathrm{Y}=\left[\begin{array}{ll}2 & 3 \\ 4 & 0\end{array}\right]$ and $3 \mathrm{X}+2 \mathrm{Y}=\left[\begin{array}{cc}2 & -2 \\ -1 & 5\end{array}\right]:$
Ans: Given:
$\begin{aligned}
&2 X+3 Y=\left[\begin{array}{cc}
2 & 3 \\
4 & 0
\end{array}\right] \ldots(1) \\
&3 X+2 Y=\left[\begin{array}{cc}
2 & -2 \\
-1 & 5
\end{array}\right] \ldots
\end{aligned} $
Multiplying (1) with 2, we have $4 X+6 Y=\left[\begin{array}{ll}4 & 6 \\ 8 & 0\end{array}\right] \ldots(3)$
Multiplying (2) with 3, we have
$9 X+6 Y=\left[\begin{array}{cc}
6 & -6 \\
-3 & 15
\end{array}\right] \ldots(4) $
From (3) and (4), we have
$-5 X=\left[\begin{array}{cc}4-6 & 6-(-6) \\ 8-(-3) & 0-15\end{array}\right] \therefore X=\left[\begin{array}{cc}\frac{2}{5} & -\frac{12}{5} \\ -\frac{11}{5} & 3\end{array}\right]$
Putting $\mathrm{X}$ in (1)
$ 2\left[\begin{array}{cc}
\frac{2}{5} & -\frac{12}{5} \\
-\frac{11}{5} & 3
\end{array}\right]+3 \mathrm{Y}=\left[\begin{array}{ll}
2 & 3 \\
4 & 0
\end{array}\right] 3 \mathrm{Y}=\left[\begin{array}{cc}
\frac{6}{5} & \frac{39}{5} \\
\frac{42}{5} & -6
\end{array}\right] $
$ \therefore \mathrm{Y}=\left[\begin{array}{cc}
\frac{2}{5} & \frac{13}{5} \\
\frac{14}{5} & -2
\end{array}\right] $
8. Find $X$, if $Y=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ and $2 X+Y=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]$
Ans: Given:
$2 \mathrm{X}+\mathrm{Y}=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]$, where $\mathrm{Y}=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$
$2 \mathrm{X}+\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right] 2 \mathrm{X}=\left[\begin{array}{cc}1-3 & 0-2 \\ -3-1 & 2-4\end{array}\right]$
$\therefore \mathrm{X}=\left[\begin{array}{rr}-1 & -1 \\ -2 & -1\end{array}\right]$
9. Find $x$ and $y$, if $2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$
Ans: Given: $2\left[\begin{array}{ll}1 & 3 \\ 0 & \mathrm{x}\end{array}\right]+\left[\begin{array}{ll}\mathrm{y} & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$ $\Rightarrow\left[\begin{array}{cc}2 & 6 \\ 0 & 2 \mathrm{x}\end{array}\right]+\left[\begin{array}{cc}\mathrm{y} & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}5 & 6 \\ 1 & 8\end{array}\right] \Rightarrow\left[\begin{array}{cc}2+\mathrm{y} & 6+0 \\ 0+1 & 2 \mathrm{x}+2\end{array}\right]=\left[\begin{array}{cc}5 & 6 \\ 1 & 8\end{array}\right]$
Comparing the corresponding elements of these two matrices, we have:
10. Solve the equation for $\mathbf{x}, \mathbf{y}, \mathbf{z}$ and $t$ if: $2\left[\begin{array}{cc}x & z \\ y & t\end{array}\right]+3\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]=3\left[\begin{array}{ll}3 & 5 \\ 4 & 6\end{array}\right]$
Ans: Given:
$ 2\left[\begin{array}{cc}
x & z \\
y & t
\end{array}\right]+3\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]=3\left[\begin{array}{ll}
3 & 5 \\
4 & 6
\end{array}\right]$
$ \begin{aligned}
&{\left[\begin{array}{cc}
2 x & 2 z \\
2 y & 2 t
\end{array}\right]+\left[\begin{array}{cc}
3 & -3 \\
0 & 6
\end{array}\right]=\left[\begin{array}{cc}
9 & 15 \\
12 & 18
\end{array}\right]} \\
&{\left[\begin{array}{cc}
2 x+3 & 2 z-3 \\
2 y & 2 t+6
\end{array}\right]=\left[\begin{array}{cc}
9 & 15 \\
12 & 18
\end{array}\right]}
\end{aligned} $
Comparing the corresponding elements of these two matrices, we get:
$ \begin{aligned}
&2 x+3=9 \\
&\Rightarrow x=3
\end{aligned} $
$ \begin{aligned}
&2 \mathrm{y}=12 \\
&\Rightarrow \mathrm{y}=6
\end{aligned} $
$2 z-3=15 $
$ \Rightarrow \mathrm{z}=9 $
$ 2 t+6=18 $
$ \Rightarrow \mathrm{t}=6 $
$ \therefore \mathrm{x}=3, \mathrm{y}=6, \mathrm{z}=9 \text { and } \mathrm{t}=6 \text {. } $
11. If $x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$, find values of $x$ and $y$.
Ans: Given:
$ \begin{aligned} &x\left[\begin{array}{l} 2 \\ 3 \end{array}\right]+y\left[\begin{array}{c} -1 \\ 1 \end{array}\right]=\left[\begin{array}{c} 10 \\ 5 \end{array}\right] \\
&{\left[\begin{array}{l} 2 x \\ 3 x \end{array}\right]+\left[\begin{array}{c} -y \\ y \end{array}\right]=\left[\begin{array}{c} 10 \\ 5 \end{array}\right]} \\ &{\left[\begin{array}{l} 2 x-y \\ 3 x+y \end{array}\right]=\left[\begin{array}{c} 10 \\ 5 \end{array}\right]} \end{aligned} $
Comparing the corresponding elements of these two matrices, we get $2 x-y=10$ and $3 x+y=5$
Adding these two equations, we have:
$ \begin{aligned} &5 \mathrm{x}=15 \\ &\Rightarrow \mathrm{x}=3 \end{aligned} $ Now, putting $x=3$ in any equation, we have: $ \begin{aligned} &\mathrm{y}=5-3 \mathrm{x} \\ &\Rightarrow \mathrm{y}=-4 \\ &\therefore \mathrm{x}=3 \text { and } \mathrm{y}=-4 \end{aligned} $
12. Given $3\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]=\left[\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right]$, find the values of $x, y, z$ and W.
Ans: Simplifying
$\left[\begin{array}{cc}3 x & 3 y \\ 3 z & 3 w\end{array}\right]=\left[\begin{array}{cc}x+4 & 6+y+x \\ -1+z+w & 2 w+3\end{array}\right]$
Comparing the corresponding elements of these two matrices, we get:
$3 x=x+4$
$\Rightarrow x=2$
$ \begin{aligned}
&3 y=6+x+y \\
&\Rightarrow y=4
\end{aligned} $
$ \begin{aligned}
&3 w=2 w+3 \\
&\Rightarrow w=3
\end{aligned} $
$ 3 z=-1+z+w $
$ \begin{aligned}
&\Rightarrow \mathrm{z}=1 \\
&\therefore \mathrm{x}=2, \mathrm{y}=4, \mathrm{z}=1 \text { and } \mathrm{w}=3
\end{aligned} $
13. If $\mathbf{F}(\mathbf{x})=\left[\begin{array}{ccc}\cos \mathbf{x} & -\sin \mathbf{x} & 0 \\ \sin \mathbf{x} & \cos \mathbf{x} & 0 \\ 0 & 0 & 1\end{array}\right]$, show that $\mathbf{F}(\mathbf{x}) \mathbf{F}(\mathbf{y})=\mathbf{F}(\mathbf{x}+\mathbf{y})$
Ans: To show $\mathrm{F}(\mathrm{x}) \mathrm{F}(\mathrm{y})=\mathrm{F}(\mathrm{x}+\mathrm{y})$,
We first calculate $\mathrm{F}(\mathrm{x}) \mathrm{F}(\mathrm{y})$ and $\mathrm{F}(\mathrm{x}+\mathrm{y})$, and check that both are equal LHS
$F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ and $F(y)=\left[\begin{array}{ccc}\cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1\end{array}\right]$ $F(x) F(y)=\left[\begin{array}{cccc}\cos x \cos y-\sin x \sin y & -\cos x \sin y-\sin x \cos y & 0 \\ \sin x \cos y+\cos x \sin y & -\sin x \sin y+\cos x \cos y & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ $F(x) F(y)=\left[\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \operatorname{cox}(x+y) & 0 \\ 0 & 0 & 1\end{array}\right]$
$ \begin{aligned}
&F(x) F(y)=\left[\begin{array}{ccc}
\cos x \cos y-\sin x \sin y & -\cos x \sin y-\sin x \cos y & 0 \\
\sin x \cos y+\cos x \sin y & -\sin x \sin y+\cos x \cos y & 0 \\
0 & 0 & 1
\end{array}\right] \\
&F(x) F(y)=\left[\begin{array}{ccc}
\cos (x+y) & -\sin (x+y) & 0 \\
\sin (x+y) & \operatorname{cox}(x+y) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned} $
RHS
$ F(x+y)=\left[\begin{array}{ccc}
\cos (x+y) & -\sin (x+y) & 0 \\
\sin (x+y) & \operatorname{cox}(x+y) & 0 \\
0 & 0 & 1
\end{array}\right] $
$\mathrm{LHS}=\mathrm{RHS}$, proved.
14. Show that:
i. $\left[\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right] \neq\left[\begin{array}{cc}2 & 1 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right]$
Ans: To show, we first calculate LHS and RHS
LHS
$ \begin{aligned} &{\left[\begin{array}{cc}
5 & -1 \\
6 & 7
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
5(2)-1(3) & 5(1)-1(4) \\
6(2)+7(3) & 6(1)+7(4)
\end{array}\right]} \\
&{\left[\begin{array}{cc}
10-3 & 5-4 \\
12+21 & 6+28
\end{array}\right]=\left[\begin{array}{cc}
7 & 1 \\
33 & 34
\end{array}\right]}
\end{aligned} $
RHS
$ \begin{aligned}
&{\left[\begin{array}{cc}
2 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
5 & -1 \\
6 & 7
\end{array}\right]=\left[\begin{array}{ll}
2(5)+1(6) & 2(-1)+1(7) \\
3(5)+4(6) & 3(-1)+4(7)
\end{array}\right]} \\
&{\left[\begin{array}{cc}
10+6 & -2+7 \\
15+24 & -3+28
\end{array}\right]=\left[\begin{array}{cc}
16 & 5 \\
39 & 25
\end{array}\right]}
\end{aligned} $
${\left[\begin{array}{cc}2 & 1 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right] }$ ${\left[\begin{array}{cc}10+6 & -2+ \\ 15+24 & -3+\end{array}\right.}$ $\therefore$ LHS $\neq$ RHS
ii. $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right] \neq\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]$
Ans: To show, we first calculate LHS and RHS
LHS
$ \left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1 \\
2 & 3 & 4
\end{array}\right]=\left[\begin{array}{lll}
1(-1)+2(0)+3(2) & 1(1)+2(-1)+3(3) & 1(0)+2(1)+3(4) \\
0(-1)+1(0)+0(2) & 0(1)+1(-1)+0(3) & 0(0)+1(1)+0(4) \\
1(-1)+1(0)+0(2) & 1(1)+1(-1)+0(3) & 1(0)+1(1)+0(4)
\end{array}\right] $
$=\left[\begin{array}{ccc}
5 & 8 & 14 \\
0 & -1 & 1 \\
-1 & 0 & 1
\end{array}\right] $
RHS
$\begin{aligned}
{\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]}&\\=\left[\begin{array}{ccc}
-1(1)+1(0)+0(1) & -1(2)+1(1)+0(1) & -1(3)+1(0)+0(0) \\
0(1)-1(0)+1(1) & 0(2)-1(1)+1(1) & 0(3)-1(0)+1(0) \\
2(1)+3(0)+4(1) & 2(2)+3(1)+4(1) & 2(3)+3(0)+4(0)
\end{array}\right] \\
&\\=\left[\begin{array}{ccc}
-1 & -1 & -3 \\
1 & 0 & 0 \\
6 & 11 & 6
\end{array}\right]
\end{aligned}$
15. Find $A^{2}-5 A+6 I$ if $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$
Ans: We know that, $\mathrm{A}^{2}=\mathrm{A} \times \mathrm{A}$
$ \begin{aligned}
&{\left[\begin{array}{ccc}
2 & 0 & 1 \\
2 & 1 & 3 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 1 \\
2 & 1 & 3 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2(2)+0(2)+1(1) & 2(0)+0(1)+1(-1) & 2(1)+0(3)+1(0) \\
2(2)+1(2)+3(1) & 2(0)+1(1)+3(-1) & 2(1)+1(3)+3(0) \\
1(2)-1(2)+0(1) & 1(0)-1(1)+0(-1) & 1(1)-1(3)+0(0)
\end{array}\right]} \\
&{\left[\begin{array}{lll}
4+0+1 & 0+0-1 & 2+0+0 \\
4+2+3 & 0+1-3 & 2+3+0 \\
2-2+0 & 0-1+0 & 1-3+0
\end{array}\right]=\left[\begin{array}{ccc}
5 & -1 & 2 \\
9 & -2 & 5 \\
0 & -1 & -2
\end{array}\right]}
\end{aligned} $
Substituting value of $\mathrm{A}^{2}, \mathrm{~A}, \mathrm{I}$ in $\mathrm{A}^{2}-5 \mathrm{~A}+6 \mathrm{I}$
$ \Rightarrow\left[\begin{array}{ccc}
5 & -1 & 2 \\
9 & -2 & 5 \\
0 & -1 & -2
\end{array}\right]-5\left[\begin{array}{ccc}
2 & 0 & 1 \\
2 & 1 & 3 \\
1 & -1 & 0
\end{array}\right]+6\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] $
$\Rightarrow \begin{bmatrix}
5-10+6 &-1 &2-5 \\
9-10&-2-5+6 & 5-15\\
-5+0 & -1+5 & -2-0+6
\end{bmatrix}\Rightarrow \begin{bmatrix}
1 & -1 &-3 \\
-1 &-1 & -10\\
-5& 4 & 4
\end{bmatrix}$
16. If $\mathbf{A=\begin{bmatrix} 1 &0 & 2\\ 0&2 & 1\\ 2 & 0& 3 \end{bmatrix}},\text{Prove that}\; A^3-6A^2+7A+2I=0$
Ans: We know that, $\mathrm{A}^{2}=\mathrm{A} \times \mathrm{A}$ and $\mathrm{A}^{3}=\mathrm{A}^{2} \times \mathrm{A}$ For $\mathrm{A}^{2}$,
$ \begin{aligned}
&{\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]=\left[\begin{array}{ll}
1(1)+0(0)+2(2) & 1(0)+0(2)+2(0) & 1(2)+0(1)+2(3) \\
0(1)+2(0)+1(2) & 0(0)+2(2)+1(0) & 0(2)+2(1)+1(3) \\
2(1)+0(0)+3(2) & 2(0)+0(2)+3(0) & 2(2)+0(1)+3(3)
\end{array}\right]} \\
&{\left[\begin{array}{lll}
1+0+4 & 0+0+0 & 2+0+6 \\
0+0+2 & 0+4+0 & 0+2+3 \\
2+0+6 & 0+0+0 & 4+0+9
\end{array}\right]=\left[\begin{array}{ccc}
5 & 0 & 8 \\
2 & 4 & 5 \\
8 & 0 & 13
\end{array}\right]}
\end{aligned} $
For $\mathrm{A}^{3}$,
Substituting value of $\mathrm{A}^{3}, \mathrm{~A}^{2}, \mathrm{~A}, \mathrm{I}$ in $\mathrm{A}^{3}-6 \mathrm{~A}^{2}+7 \mathrm{~A}+2 \mathrm{I}=0$
$ \begin{aligned}
&\Rightarrow\left[\begin{array}{ccc}
21 & 0 & 34 \\
12 & 8 & 23 \\
34 & 0 & 55
\end{array}\right]-6\left[\begin{array}{ccc}
5 & 0 & 8 \\
2 & 4 & 5 \\
8 & 0 & 13
\end{array}\right]+7\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]+2\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
&\Rightarrow\left[\begin{array}{lll}
21 & 0 & 34 \\
12 & 8 & 23 \\
34 & 0 & 55
\end{array}\right]-\left[\begin{array}{ccc}
30 & 0 & 48 \\
12 & 24 & 30 \\
48 & 0 & 78
\end{array}\right]+\left[\begin{array}{ccc}
7 & 0 & 14 \\
0 & 14 & 7 \\
14 & 0 & 21
\end{array}\right]+\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \\
&\Rightarrow\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
&\therefore \mathrm{A}^{3}-6 \mathrm{~A}^{2}+7 \mathrm{~A}+2 \mathrm{I}=0
\end{aligned} $
17. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, find $k$ so that $A^{2}=k A-2 I$
Ans: We know that, $\mathrm{A}^{2}=\mathrm{A} \times \mathrm{A}$
$ \begin{aligned}
{\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right]\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right] } &=\left[\begin{array}{ll}
3(3)-2(4) & 3(-2)-2(-2) \\
4(3)-2(4) & 4(-2)-2(-2)
\end{array}\right] \\
&=\left[\begin{array}{ll}
1 & -2 \\
4 & -4
\end{array}\right]
\end{aligned} $
Now $\mathrm{A}^{2}=\mathrm{k} \mathrm{A}-2 \mathrm{I}$
$ \begin{aligned}
&\Rightarrow\left[\begin{array}{cc}
1 & -2 \\
4 & -4
\end{array}\right]=\mathrm{k}\left[\begin{array}{cc}
3 & -2 \\
4 & -2
\end{array}\right]-2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
&\Rightarrow\left[\begin{array}{cc}
1 & -2 \\
4 & -4
\end{array}\right]=\left[\begin{array}{cc}
3 \mathrm{k}-2 & -2 \mathrm{k} \\
4 \mathrm{k} & -2 \mathrm{k}-2
\end{array}\right]
\end{aligned} $
Comparing the corresponding elements, we have:
Comparing the corresponding elements, we have:
$ \begin{aligned}
&\Rightarrow 3 \mathrm{k}-2=1 \\
&\Rightarrow \mathrm{k}+1
\end{aligned} $
Thus, the value of $\mathrm{k}$ is 1 .
18. If $A=\left[\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right]$ and $I$ is the identity matrix of order 2 , show that $\mathbf{I}+\mathbf{A}=(\mathbf{I}-\mathbf{A})\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
Ans: LHS
$ \mathrm{I}+\mathrm{A}=\left[\begin{array}{ll}
1 & 0 \\ 0 & 1 \end{array}\right]+\left[\begin{array}{cc} 0 & -\tan \frac{\alpha}{2} \\
\tan \frac{\alpha}{2} & 0 \end{array}\right] $
$ =\left[\begin{array}{cc}
1 & -\tan \frac{\alpha}{2} \\
\tan \frac{\alpha}{2} & 1
\end{array}\right] $
RHS
$ \begin{aligned}
&(\mathrm{I}-\mathrm{A})\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]=\left[\begin{array}{cc}
1 & \tan \frac{\alpha}{2} \\
-\tan \frac{\alpha}{2} & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \\
&\Rightarrow\left[\begin{array}{cc}
\cos \alpha+\sin \alpha \tan \frac{\alpha}{2} & -\sin \alpha+\cos \alpha \tan \frac{\alpha}{2} \\
-\cos \alpha \tan \frac{\alpha}{2}+\sin \alpha & \sin \alpha \tan \frac{\alpha}{2}+\cos \alpha
\end{array}\right]
\end{aligned} $
$ \begin{aligned}
&\Rightarrow\left[\begin{array}{cc}
1-2 \sin ^{2} \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \tan \frac{\alpha}{2} & -2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}+\left(2 \cos ^{2} \frac{\alpha}{2}-1\right) \tan \frac{\alpha}{2} \\
-\left(2 \cos ^{2} \frac{\alpha}{2}-1\right) \tan \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} & 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \tan \frac{\alpha}{2}+1-2 \sin ^{2} \frac{\alpha}{2} \end{array}\right] \\
&\Rightarrow\left[\begin{array}{cc}
1-2 \sin ^{2} \frac{\alpha}{2}+2 \sin ^{2} \frac{\alpha}{2} & -2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}-\tan \frac{\alpha}{2} \\
-2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}+\tan \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} & 2 \sin ^{2} \frac{\alpha}{2}+1-2 \sin ^{2} \frac{\alpha}{2}
\end{array}\right] \\
&\Rightarrow\left[\begin{array}{cc}
1 & -\tan \frac{\alpha}{2} \\
\tan \frac{\alpha}{2} & 1
\end{array}\right]
\end{aligned} $
We get LHS = RHS.
19. A trust fund has Rs30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of :
(a) Rs 1,800
Ans: Let Rs $x$ be invested in the first bond. Then, the sum of money invested in the second bond pays Rs $(30,000-\mathrm{x})$
It is given that the first bond pays $5 \%$ interest per year and the second bond pay $7 \%$ interest per year.
Therefore, in order to obtain an annual total interest of Rs 1,800 , we have:
$\Rightarrow\left[\begin{array}{ll}x & 30,000-x\end{array}\right]\left[\begin{array}{c}\frac{5}{100} \\ \frac{7}{100}\end{array}\right]=1,800$
$ \begin{aligned}
&\Rightarrow \frac{5 x}{100}+\frac{7(30,000-x)}{100}=1,800 \\
&\Rightarrow 5 x+2,10,000-7 x=1,80,000 \\
&\Rightarrow 2 x=30,000 \\
&\Rightarrow x=15,000
\end{aligned} $
Thus, in order to obtain an annual total interest of Rs 1,800 , the trust fund should invest Rs 15,000 in the first bond and the remaining Rs 15,000 in the second bond.
(b) Rs 2,000
Ans: Let Rs $x$ be invested in the first bond. Then, the sum of money invested in the second bond pays Rs $(30,000-\mathrm{x})$
It is given that the first bond pays $5 \%$ interest per year and the second bond pay $7 \%$ interest per year.
Therefore, in order to obtain an annual total interest of Rs 2,000 , we have:
$\Rightarrow\left[\begin{array}{ll}x & 30,000-x\end{array}\right]\left[\begin{array}{c}\frac{5}{100} \\ \frac{7}{100}\end{array}\right]=2,000$
$\begin{aligned}
&\Rightarrow \frac{5 x}{100}+\frac{7(30,000-x)}{100}=2,000 \\
&\Rightarrow 5 x+2,10,000-7 x=2,00,000 \\
&\Rightarrow 2 x=10,000 \\
&\Rightarrow x=5,000
\end{aligned} $
Thus, in order to obtain an annual total interest of Rs 2,000 , the trust fund should invest Rs 5,000 in the first bond and the remaining Rs 25,000 in the second bond.
20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs 80, Rs 60 and Rs $\mathbf{4 0}$ each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.
Ans: The bookshop has 10 dozen chemistry books, 8 dozen physics books, and 10 dozen economics books. The selling prices of a chemistry book, a physics book, and an economics book are respectively given as Rs 80, Rs 60 and Rs 40 . The total amount of money that will be received from the sale of all these books can be represented in the form of a matrix as:
$ \begin{aligned}
&\Rightarrow 12\left[\begin{array}{lll}
10 & 8 & 10
\end{array}\right]\left[\begin{array}{l}
80 \\
60 \\
40
\end{array}\right] \\
&\Rightarrow 12[10 \times 80+8 \times 60+10 \times 40] \\
&\Rightarrow 12(800+480+400) \\
&\Rightarrow 12(1680) \\
&\Rightarrow 20160
\end{aligned} $
Thus, the bookshop will receive Rs 20160 from the sale of all these books.
21. Assume $X, Y, Z, W$ and $P$ are the matrices of order $2 \times n, 3 \times k, 2 \times p, n \times 3$ and $\mathrm{p} \times \mathrm{k}$ respectively. The restriction on $\mathrm{n}, \mathrm{k}$ and $\mathrm{p}$ so that $\mathrm{PY}+\mathrm{WY}$ will be defined.
A. $k=3, p=n$
B. $k$ is arbitrary, $p=2$
C. $\mathbf{p}$ is arbitrary, $\mathbf{k}=\mathbf{2}$
D. $k=2, p=3$
Ans: The correct option is Option(A)
Matrices $P$ and $Y$ are of the orders $p \times k$ and $3 \times k$ respectively.
Therefore, matrix PY will be defined if $\mathrm{k}=3$.
Consequently, $P Y$ will be of the order $p \times k$.
Matrices $\mathrm{W}$ and $\mathrm{Y}$ are of the orders $\mathrm{n} \times 3$ and $3 \times \mathrm{k}$ respectively.
Since the number of columns in $\mathrm{W}$ is equal to the number of rows in $\mathrm{Y}$, matrix $\mathrm{WY}$ is well-defined and is of the order $\mathrm{n} \times \mathrm{k}$.
Matrices PY and WY can be added only when their orders are the same.
However, PY is of the order $\mathrm{p} \times \mathrm{k}$ and $\mathrm{WY}$ is of the order $\mathrm{n} \times \mathrm{k}$. Therefore. we must have $\mathrm{p}=\mathrm{n}$.
Thus, $\mathrm{k}=3$ and $\mathrm{p}=\mathrm{n}$, are the restrictions on $\mathrm{n}, \mathrm{k}$ and $\mathrm{p}$ so that $\mathrm{PY}+\mathrm{WY}$ will be defined.
22. Assume $X, Y, Z, W$ and $P$ are the matrices of order $2 \times n, 3 \times k, 2 \times p, n \times 3$ and $p \times k$ respectively. If $n=p$, then the order of the matrix $7 X-5 Z$ is
A. $\mathbf{p} \times \mathbf{2}$
B. $2 \times n$
C. $\mathrm{n} \times 3$
D. $\mathbf{p} \times \mathbf{n}$
Ans: The correct answer is B.
Matrix $X$ is of the order $2 \times n$.
Therefore, matrix $7 \mathrm{X}$ is also of the same order.
Matrix $Z$ is of the order $2 \times p$ or $2 \times n$ (Because $n=p$ )
Therefore, matrix $5 \mathrm{Z}$ is also of the same order.
Now, both the matrices $7 \mathrm{X}$ and $5 \mathrm{Z}$ are of the order $2 \times \mathrm{n}$.
Thus, matrix $7 \mathrm{X}-5 \mathrm{Z}$ is well-defined and is of the order $2 \times \mathrm{n}$.
Conclusion
In Exercise 3.2 of Class 12 Maths Chapter 3 on Matrices, covere important concepts like types of matrices, operations on matrices, and properties associated with them. It's crucial to understand the addition, subtraction, and multiplication of matrices, as well as the properties such as commutativity and associativity that apply to these operations. Previous year question papers often include 2-3 questions from this section, making it vital to master these problems to score well in exams. Additionally, focusing on the types of matrices like row matrix, column matrix, square matrix, and identity matrix is essential for a clear understanding. Mastering Class 12 maths Ex 3.2 will strengthen your foundation in matrix algebra, which is fundamental in various fields including computer science, engineering, and physics. Ensure you grasp the operations thoroughly and can identify different types of matrices easily. This will pave the way for tackling more complex problems in the future.
Class 12 Maths Chapter 3: Exercises Breakdown
S.No. | Chapter 3 - Matrices Exercises in PDF Format | |
1 | Class 12 Maths Chapter 3 Exercise 3.1 - 10 Questions & Solutions (5 Short Answers, 5 Long Answers) | |
2 | Class 12 Maths Chapter 3 Exercise 3.3 - 12 Questions & Solutions (4 Short Answers, 8 Long Answers) | |
3 | Class 12 Maths Chapter 3 Exercise 3.4 - 18 Questions & Solutions (18 Short Answers) | |
4 | Class 12 Maths Chapter 3 Miscellaneous Exercise - 11 Questions & Solutions |
Other Study Materials for CBSE Class 12 Maths Chapter 3 Matrices
S.No. | Important Study Materials Links for Class 12 Maths Chapter 3 |
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
NCERT Solutions for Class 12 Maths | Chapter-wise List
Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.
S.No. | NCERT Solutions Class 12 Maths Chapter-wise List |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
Related Links for NCERT Class 12 Maths in Hindi
Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.
S.No. | Related NCERT Solutions for Class 12 Maths |
1 | |
2 |
Important Related Links for NCERT Class 12 Maths
S.No | Important Resources Links for Class 12 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |
FAQs on NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2
1. Where can I find accurate, step-by-step NCERT Solutions for Class 12 Maths Chapter 3 (Matrices)?
You can find comprehensive NCERT Solutions for Class 12 Maths Chapter 3, updated for the CBSE 2025-26 syllabus, on educational platforms like Vedantu. These solutions provide detailed, step-by-step methods for every question in all exercises, ensuring they align with the official NCERT and CBSE board exam patterns.
2. What is the correct method to present solutions for matrix addition and subtraction problems as per NCERT guidelines?
According to the NCERT guidelines, the correct method for matrix addition or subtraction involves these steps:
- First, verify that the matrices involved have the same order.
- Write down the matrices clearly in the equation.
- Show the addition or subtraction of corresponding elements in a new matrix structure.
- Finally, write the resultant matrix as the answer.
Following this step-by-step process is essential for securing full marks in CBSE exams.
3. How should I correctly solve matrix multiplication problems according to the CBSE pattern?
To correctly solve a matrix multiplication problem (e.g., AB), you must first state and verify the compatibility condition: the number of columns in matrix A must equal the number of rows in matrix B. The solution should then clearly show the row-by-column multiplication and addition process for each element of the resulting matrix. Simply writing the final answer without showing the intermediate calculations is a common mistake to avoid.
4. Why is showing every calculation step crucial when solving Chapter 3 problems for the CBSE board exams?
Showing every step is crucial because the CBSE marking scheme for the 2025-26 exams allocates marks for the methodology, not just the final answer. This includes showing the setup of matrix operations, intermediate calculations, and the application of properties. A detailed, stepwise solution demonstrates your understanding of the process and allows evaluators to award partial credit even if a minor calculation error occurs.
5. How does the non-commutative property of matrix multiplication (AB ≠ BA) impact the step-by-step solution when solving matrix equations?
This property is critical because the order of multiplication cannot be changed. When solving an equation like AX = B for X, you cannot simply divide by A. You must pre-multiply both sides by the inverse of A (if it exists) to get X = A⁻¹B. The NCERT solutions strictly adhere to this rule, as post-multiplying (BA⁻¹) would yield an incorrect result. Maintaining the correct sequence in your steps is mandatory.
6. What is the NCERT-prescribed method for solving problems that involve finding an unknown value, like in Q17 of Ex 3.2 (A² = kA – 2I)?
The correct NCERT method involves the following sequence:
- First, calculate each matrix term separately (e.g., compute A² by multiplying A by A).
- Substitute the calculated matrices back into the given equation.
- Simplify the Right Hand Side (RHS) into a single matrix by performing scalar multiplication and subtraction.
- Equate the corresponding elements of the matrices on the LHS and RHS.
- Solve the resulting simple equations to find the value of the unknown (k).
7. How do the NCERT Solutions apply matrix multiplication to solve real-world problems like the trust fund investment question in Exercise 3.2?
The NCERT Solutions demonstrate a systematic approach to word problems. The solution involves:
- Representing the investment amounts as a row matrix.
- Representing the corresponding interest rates as a column matrix.
- Multiplying these two matrices to set up an equation where the product equals the total interest.
This method efficiently translates the problem's conditions into a matrix equation, which can then be solved using standard algebraic steps.
8. Do the official NCERT Solutions for Chapter 3 cover all questions, including those in the Miscellaneous Exercise?
Yes, complete NCERT Solutions provide step-by-step answers for every question from all exercises, including the Miscellaneous Exercise. The solutions for these miscellaneous problems are especially useful as they often require integrating multiple concepts from the chapter, such as transpose, symmetry, and various matrix operations, all solved as per the CBSE 2025-26 board exam standards.

















