Instantly download the free PDF of Integrals Exercise 7.8 NCERT Solutions for Class 12 Maths
Get Class 12 Maths NCERT Solutions for Chapter 7 - Integrals Exercise 7.8, which has detailed solutions to all problems from the textbook. This section focuses on complex integration problems that will help students to better understand integral calculus. Each solution is covered to make sure that integration methods are easily understood.


Exercise 7.8 Class 12 solutions can help you prepare for exams or improve your calculus skills. Understands integrals with simple explanations and practice exercises that follow NCERT requirements, providing important help for taking this important field of mathematics. Access the latest CBSE Class 12 Maths Syllabus here.
Glance on NCERT Solutions for Maths Chapter 7 Exercise 7.8 Class 12 | Vedantu
Exercise 7.8 Class 12 explains various types of integrals and their applications in real-world problems.
It covers techniques such as substitution and integration by parts to solve complex integrals.
Integrating a function's slope over an interval shows how much the function's value changes at the interval's ends.
Integrating a function's slope gives back the original function, in certain cases.
Finding the integral of a function means finding a special way to add up tiny parts of the function, often by checking its values at the start and end of an interval.
Adds up the space under a curve between it and the x-axis over a set interval, without needing exact numbers.
Finds the total area under a curve between it and the x-axis over a fixed interval, showing the total signed space between the curve and the x-axis in that range.
Exercise 7.8 Class 12 contains 22 questions with fully solved solutions, which provides practical insights into integrating functions and applying these concepts in mathematical and scientific contexts.
Formulas Used in Class 12 Chapter 7 Exercise 7.8
Integration by Parts: $\int {u\,\,dv\,\, = \,\,uv- \,\int {v\,\,du} } $
Substitution Method: $\int f\left ( g\left ( x \right ) \right )\cdot {g}'\left ( x \right )dx=\int f\left ( u \right )du$
Access NCERT Solutions for Maths Class 12 Chapter 7 - Integrals
Exercise 7.8
1.Integrate the given integral $\mathbf{\int\limits_{ - 1}^1 {(x + 1)dx} }$.
Ans: To simplify the question let us suppose, $I = \int\limits_{ - 1}^1 {(x + 1)dx} $
$\int {(x + 1)dx = \dfrac{{{x^2}}}{2}} + x$
Again, let us suppose the function is $F(x) = \dfrac{{{x^2}}}{2} + x$
By second fundamental theorem of calculus, we obtain
$ I = F(1) - F( - 1) $
$= \left( {\dfrac{1}{2} + 1} \right) - \left( {\dfrac{1}{2} - 1} \right) $
$ = \dfrac{1}{2} + 1 - \dfrac{1}{2} + 1 $
$ = 2 $
2.Integrate the given integral $\mathbf{\int\limits_2^3 {\dfrac{1}{x}dx} }$.
Ans: To simplify the question let us suppose, $I = \int\limits_2^3 {\dfrac{1}{x}dx} $
Thus, $\int {\dfrac{1}{x}dx = \log \left| x \right|} $
Again, let us suppose the function is$F(x) = \log \left| x \right|$
By second fundamental theorem of calculus, we obtain
$ I = F(3) - F(2) $
$ = \log \left| 3 \right| - \log \left| 2 \right| $
$ = \log \dfrac{3}{2} $
3.Integrate the given integral $\mathbf{\int\limits_1^2 {\left( {4{x^3} - 5{x^2} + 6x + 9} \right)dx} }$
Ans: To simplify the question let us suppose,
$I = \int\limits_1^2 {\left( {4{x^3} - 5{x^2} + 6x + 9} \right)dx} $
$\int\limits_1^2 {\left( {4{x^3} - 5{x^2} + 6x + 9} \right)dx} = 4\left( {\dfrac{{{x^4}}}{4}} \right) - 5\left( {\dfrac{{{x^3}}}{3}} \right) + 6\left( {\dfrac{{{x^2}}}{2}} \right) + 9(x) $
Again, let us suppose the function is
$ \Rightarrow {x^4} - \dfrac{{5{x^3}}}{3} + 3{x^2} + 9x = F(x)$
By second fundamental theorem of calculus, we obtain
$I = F(2) - F(1)$
$ I = \left\{ {{2^4} - \dfrac{{5{{(2)}^3}}}{3} + 3{{(2)}^2} + 9(2)} \right\} - \left\{ {{{(1)}^4} - \dfrac{{5{{(1)}^3}}}{3} + 3{{(1)}^2} + 9(1)} \right\} $
$ = \left( {16 - \dfrac{{40}}{3} + 12 + 18} \right) - \left( {1 - \dfrac{5}{3} + 3 + 9} \right) $
$ = 16 - \dfrac{{40}}{3} + 12 + 18 - 1 + \dfrac{5}{3} - 3 - 9 $
$ = 33 - \dfrac{{35}}{3} $
$ = \dfrac{{99 - 35}}{3} $
$ = \dfrac{{64}}{3} $
4.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{4}} {\left( {\sin 2xdx} \right)}} $
Ans: To simplify the question let us suppose,
$I = \int\limits_0^{\dfrac{\pi }{4}} {\left( {\sin 2xdx} \right)} $
$\int {\sin 2xdx = \left( {\dfrac{{ - \cos 2x}}{2}} \right)} $
Again, let us suppose the function is$\left( {\dfrac{{ - \cos 2x}}{2}} \right) = F(x)$
By second fundamental theorem of calculus, we obtain
$ I = F\left( {\dfrac{\pi }{4}} \right) - F(0) $
$ = - \dfrac{1}{2}\left[ {\cos 2\left( {\dfrac{\pi }{4}} \right) - \cos 0} \right] $
$ = - \dfrac{1}{2}\left[ {\cos 2\left( {\dfrac{\pi }{4}} \right) - \cos 0} \right] $
$ = - \dfrac{1}{2}\left[ {\cos 2\left( {\dfrac{\pi }{4}} \right) - \cos 0} \right] $
$ = - \dfrac{1}{2}\left[ {0 - 1} \right] $
$ = \dfrac{1}{2} $
5.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos 2xdx} \right)} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos 2xdx} \right)} $
$ \int {\cos 2xdx = \left( {\dfrac{{\sin 2x}}{2}} \right)} $
Again, let us suppose the function is$\left( {\dfrac{{\sin 2x}}{2}} \right) = F(x)$
By second fundamental theorem of calculus, we obtain
$ I = F\left( {\dfrac{\pi }{2}} \right) - F(0) $
$ = \dfrac{1}{2}\left[ {\sin 2\left( {\dfrac{\pi }{2}} \right) - \sin 0} \right] $
$ = \dfrac{1}{2}\left[ {\sin \pi - \sin 0} \right] $
$ = \dfrac{1}{2}\left[ {0 - 0} \right] $
$ = 0 $
6.Integrate the given integral $\mathbf{\int\limits_4^5 {{e^x}dx} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_4^5 {{e^x}dx} $
$ \int\limits_4^5 {{e^x}dx} = {e^x} = F(x) $
By second fundamental theorem of calculus, we obtain
$I = F(5) - F(4) $
$ = {e^5} - {e^4} $
$ = {e^4}\left( {e - 1} \right) $
7.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{4}} {\tan xdx} }$
Ans: To simplify the question let us suppose,
$I = \int\limits_0^{\dfrac{\pi }{4}} {\tan xdx} $
$ \int {\tan xdx = - \log \left| {\cos x} \right|} $
Again, let us suppose the function is$ - \log \left| {\cos x} \right| = F(x)$
By second fundamental theorem of calculus, we obtain
$ I = F\left( {\dfrac{\pi }{4}} \right) - F(0) $
$ = - \log \left| {\cos \dfrac{\pi }{4}} \right| + \log \left| {\cos 0} \right| $
$ = - \log \left| {\dfrac{1}{{\sqrt 2 }}} \right| + \log \left| 1 \right| $
$ = - \log {\left( 2 \right)^{ - \dfrac{1}{2}}} $
$ = \dfrac{1}{2}\log 2 $
8.Integrate the given integral $\mathbf{\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{4}} {\cos ecxdx} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{4}} {\cos ecxdx} $
$ \int {\cos ecxdx = \log \left| {\cos ecx\dfrac{\pi }{6} - \cot \dfrac{\pi }{6}} \right|} $
Again, let us suppose the function is$F(x) = \log \left| {\cos x} \right|$
By second fundamental theorem of calculus, we obtain
$I = F\left( {\dfrac{\pi }{4}} \right) - F\left( {\dfrac{\pi }{6}} \right) $
$ = \log \left| {\cos ec\dfrac{\pi }{4} - \cot \dfrac{\pi }{4}} \right| - \log \left| {\cos ec\dfrac{\pi }{6} - \cot \dfrac{\pi }{6}} \right| $
$ = \log \left| {\sqrt 2 - 1} \right| - \log \left| {2 - \sqrt 3 } \right| $
$ = \log \left( {\dfrac{{\sqrt 2 - 1}}{{2 - \sqrt 3 }}} \right) $
9.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{dx}}{{\sqrt {1 - {x^2}} }}} }$
Ans: To simplify the question let us suppose,
$I = \int\limits_0^1 {\dfrac{{dx}}{{\sqrt {1 - {x^2}} }}} $
Again, let us suppose the function is
$ I = \int {\dfrac{{dx}}{{\sqrt {1 - {x^2}} }} = F(x)} $
$ {\sin ^{ - 1}}x = F(x) $
By second fundamental theorem of calculus, we obtain
$ I = F(1) - F(0) $
$ = {\sin ^{ - 1}}(1) - {\sin ^{ - 1}}(0) $
$ = \dfrac{\pi }{2} - 0 $
$ = \dfrac{\pi }{2} $
10.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{dx}}{{\sqrt {1 + {x^2}} }}}} $
Ans: To simplify the question let us suppose,
$ I = \int\limits_0^1 {\dfrac{{dx}}{{1 + {x^2}}}} $
$ \int {\dfrac{{dx}}{{1 + {x^2}}} = {{\tan }^{ - 1}}} $
Again, let us suppose the function is
${\tan ^{ - 1}}x = F(x)$
By second fundamental theorem of calculus, we obtain
$I = F(1) - F(0) $
$= {\tan ^{ - 1}}(1) - {\tan ^{ - 1}}(0) $
$ = \dfrac{\pi }{4} $
11.Integrate the given integral $\mathbf{\int\limits_2^3 {\dfrac{{dx}}{{{x^2} - 1}}} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_2^3 {\dfrac{{dx}}{{{x^2} - 1}}} $
$ \int {\dfrac{{dx}}{{{x^2} - 1}} = \dfrac{1}{2}\log \left| {\dfrac{{x - 1}}{{x + 1}}} \right|} $
Again, let us suppose the function is
$\dfrac{1}{2}\log \left| {\dfrac{{x - 1}}{{x + 1}}} \right| = F(x)$
By second fundamental theorem of calculus, we obtain
$ I = F(3) - F(2) $
$ = \dfrac{1}{2}\left[ {\log \left| {\dfrac{{3 - 1}}{{3 + 1}}} \right| - \log \left| {\dfrac{{2 - 1}}{{2 + 1}}} \right|} \right] $
$ = \dfrac{1}{2}\left[ {\log \left| {\dfrac{2}{4}} \right| - \log \left| {\dfrac{1}{3}} \right|} \right] $
$ = \dfrac{1}{2}\left[ {\log \dfrac{1}{2} - \log \dfrac{1}{3}} \right] $
$ = \dfrac{1}{2}\left[ {\log \dfrac{3}{2}} \right] $
12.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}xdx} }$
Ans: To simplify the question let us suppose,
$\int {{{\cos }^2}xdx = \int {\left( {\dfrac{{1 + \cos 2x}}{2}} \right)dx} } $
$ \dfrac{x}{2} + \dfrac{{\sin 2x}}{4} = \dfrac{1}{2}\left( {x + \dfrac{{\sin 2x}}{2}} \right) $
Again, let us suppose the function is
$\dfrac{1}{2}\left( {x + \dfrac{{\sin 2x}}{2}} \right) = F(x)$
By second fundamental theorem of calculus, we obtain
$ I = F\left( {\dfrac{\pi }{2}} \right) - F(0) $
$ = \dfrac{1}{2}\left[ {\left( {\dfrac{\pi }{2} + \dfrac{{\sin \pi }}{2}} \right) - \left( {0 + \dfrac{{\sin 0}}{2}} \right)} \right] $
$ = \dfrac{1}{2}\left[ {\dfrac{\pi }{2} + 0 - 0 + 0} \right] $
$ = \dfrac{\pi }{4} $
13.Integrate the given integral $\mathbf{\int\limits_2^3 {\dfrac{{xdx}}{{{x^2} + 1}}}} $
Ans: To simplify the question let us suppose,
$ I = \int\limits_2^3 {\dfrac{{xdx}}{{{x^2} + 1}}} $
$ \int {\dfrac{{xdx}}{{{x^2} + 1}}} $
$ = \dfrac{1}{2}\int {\dfrac{{2x}}{{{x^2} + 1}}dx} $
$ = \dfrac{1}{2}\log \left( {1 + {x^2}} \right) $
Again, let us suppose the function is
$\dfrac{1}{2}\log \left( {1 + {x^2}} \right) = F(x)$
By second fundamental theorem of calculus, we obtain
$ I = F(3) - F(2) $
$ = \dfrac{1}{2}\left[ {\log \left( {1 + {{\left( 3 \right)}^2}} \right) - \log \left( {1 + {{(2)}^2}} \right)} \right] $
$ = \dfrac{1}{2}\left[ {\log 10 - \log 5} \right] $
$ = \dfrac{1}{2}\left[ {\log \dfrac{{10}}{5}} \right] $
$= \dfrac{1}{2}\left[ {\log 2} \right] $
14.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{2x + 3}}{{5{x^2} + 1}}dx} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_0^1 {\dfrac{{2x + 3}}{{5{x^2} + 1}}dx} $
$ \int {\dfrac{{2x + 3}}{{5{x^2} + 1}}dx} $
$ = \dfrac{1}{5}\int {\dfrac{{5\left( {2x + 3} \right)}}{{5{x^2} + 1}}dx} $
$ = \dfrac{1}{5}\int {\dfrac{{\left( {10x + 15} \right)}}{{5{x^2} + 1}}dx} $
$ = \dfrac{1}{5}\int {\dfrac{{10x}}{{5{x^2} + 1}}dx} + 3\int {\dfrac{1}{{5{x^2} + 1}}dx} $
$= \dfrac{1}{5}\int {\dfrac{{10x}}{{5{x^2} + 1}}dx} + 3\int {\dfrac{1}{{5\left( {{x^2} + \dfrac{1}{5}} \right)}}dx} $
$ = \dfrac{1}{5}\log \left( {5{x^2} + 1} \right) + \dfrac{3}{5}\dfrac{1}{{\dfrac{1}{{\sqrt 5 }}}}{\tan ^{ - 1}}\dfrac{x}{{\dfrac{1}{{\sqrt 5 }}}} $
$ = \dfrac{1}{5}\log \left( {5{x^2} + 1} \right) + \dfrac{3}{{\sqrt 5 }}{\tan ^{ - 1}}\left( {\sqrt 5 } \right)x $
$ = F(x) $
By second fundamental theorem of calculus, we obtain
$ I = F(3) - F(2) $
$ = \dfrac{1}{5}\left[ {\log \left( {1 + 5} \right) - \dfrac{3}{{\sqrt 5 }}\log \left( {\sqrt 5 } \right)} \right] - \left[ {\dfrac{1}{5}\log (1) + \dfrac{3}{{\sqrt 5 }}{{\tan }^{ - 1}}(0)} \right] $
$ = \dfrac{1}{5}\left[ {\log 6} \right] + \dfrac{3}{{\sqrt 5 }}{\tan ^{ - 1}}\sqrt 5 $
15.Integrate the given integral $\mathbf{\int\limits_0^1 {x{e^{{x^2}}}dx} }$
Ans: To simplify the question let us suppose,
$= \int\limits_0^1 {x{e^{{x^2}}}dx}$
$ {x^2} = t $
$ \Rightarrow 2xdx = dt $
As $x \to 0,t \to 0$ ,
Again $x \to 1,t \to 1,$,
$\therefore I = \dfrac{1}{2}\int\limits_0^1 {{e^t}dt} $
$ \dfrac{1}{2}\int\limits_0^1 {{e^t}dt} = \dfrac{1}{2}{e^t}dt $
$ \dfrac{1}{2}{e^t}dt = F(t) $
By second fundamental theorem of calculus, we obtain
$ I = F(1) - F(0) $
$ = \dfrac{1}{2}e - \dfrac{1}{2}{e^0} $
$ = \dfrac{1}{2}\left( {e - 1} \right) $
16.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{5{x^2}}}{{{x^2} + 4x + 3}}dx}} $
Ans: To simplify the question let us suppose,
$I = \int\limits_0^1 {\dfrac{{5{x^2}}}{{{x^2} + 4x + 3}}dx} $
Dividing $5{x^2}$by ${x^2} + 4x + 3$, we obtain
$ I = \int\limits_1^2 {\left\{ {5 - \dfrac{{20x + 15}}{{{x^2} + 4x + 3}}} \right\}} dx $
$ = \int\limits_1^2 {5dx - \int\limits_1^2 {\dfrac{{20x + 15}}{{{x^2} + 4x + 3}}} } dx $
$ = \left[ {5x} \right]_1^2 - \int\limits_1^2 {\dfrac{{20x + 15}}{{{x^2} + 4x + 3}}dx} $
$ I = 5 - {I_1} $
Consider,
Let,
$20x + 15 = A\dfrac{d}{{dx}}\left( {{x^2} + 4x + 3} \right) + B $
$= 2Ax + (4A + B) $
Equating the coefficients of $x$ and constant term, we obtain
$A = 10$ and $B = - 25$
Let,${x^2} + 4x + 3 = t $
$ \Rightarrow \left( {2x + 4} \right)dx = dt $
$ \Rightarrow {I_1} = 10\int {\dfrac{{dt}}{t} - 25\int {\dfrac{{dx}}{{{{\left( {x + 2} \right)}^2} - {1^2}}}} } $
$ = 10\log t - 25\left[ {\dfrac{1}{2}\log \left( {\dfrac{{x + 1}}{{x + 3}}} \right)} \right]_1^2 $
$ = \left[ {10\log 15 - 10\log 18} \right] - 25\left[ {\dfrac{1}{2}\log \dfrac{3}{5} - \dfrac{1}{2}\log \dfrac{2}{4}} \right] $
$ = \left[ {10\log 5 + 10\log 3 - 10\log 4 - 10\log 2} \right] - \dfrac{{25}}{2}\left[ {\log 3 - \log 5 - \log 2 + \log 4} \right] $
$ = \left[ {10 + \dfrac{{25}}{2}} \right]\log 5 + \left[ { - 10 - \dfrac{{25}}{2}} \right]\log 4 + \left[ {10 + \dfrac{{25}}{2}} \right]\log 3 + \left[ { - 10 + \dfrac{{25}}{2}} \right]\log 2 $
$ = \dfrac{{45}}{2}\log 5 - \dfrac{{45}}{2}\log 4 - \dfrac{5}{2}\log 3 + \dfrac{5}{2}\log 2 $
$ = \dfrac{{45}}{2}\log \dfrac{5}{4} - \dfrac{5}{2}\log \dfrac{3}{2} $
Substituting the value of ${I_1}$in (1), we obtain
$ I = 5 - \left[ {\dfrac{{45}}{2}\log \dfrac{5}{2} - \dfrac{5}{2}\log \dfrac{3}{2}} \right] $
$ = 5 - \dfrac{5}{2}\left[ {9\log \dfrac{5}{2} - \log \dfrac{3}{2}} \right] $
17.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{4}} {\left( {2{{\sec }^2}x + {x^3} + 2} \right)dx} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_0^{\dfrac{\pi }{4}} {\left( {2{{\sec }^2}x + {x^3} + 2} \right)dx} $
$ \int {\left( {2{{\sec }^2}x + {x^3} + 2} \right)dx = 2\tan x + \dfrac{{{x^4}}}{4} + 2x} $
$ 2\tan x + \dfrac{{{x^4}}}{4} + 2x = F(x) $
By second fundamental theorem of calculus, we obtain
$ I = F\left( {\dfrac{\pi }{4}} \right) + F\left( 0 \right) $
$ = \left\{ {\left( {2\tan \dfrac{\pi }{4} + \dfrac{1}{4}{{\left( {\dfrac{\pi }{4}} \right)}^2} + 2\left( {\dfrac{\pi }{4}} \right)} \right) - \left( {2\tan 0 + 0 + 0} \right)} \right\} $
$ = 2\tan \dfrac{\pi }{4} + {\dfrac{\pi }{{{4^5}}}^4} + \dfrac{\pi }{2} $
$= 2 + \dfrac{\pi }{2} + \dfrac{{{\pi ^4}}}{{1024}} $
18.Integrate the given integral $\mathbf{\int\limits_0^\pi {\left( {{{\sin }^2}\dfrac{x}{2} - {{\cos }^2}\dfrac{x}{2}} \right)dx} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_0^\pi {\left( {{{\sin }^2}\dfrac{x}{2} - {{\cos }^2}\dfrac{x}{2}} \right)dx} $
$ = - \int\limits_0^\pi {\left( {{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}} \right)dx} $
$= - \int\limits_0^\pi {\cos xdx} $
$= - \int\limits_0^\pi {\cos xdx} = - \sin x $
By second fundamental theorem of calculus, we obtain
$ I = F\left( {\dfrac{\pi }{4}} \right) + F\left( 0 \right) $
$ = - \sin \pi + \sin 0 $
$ = 0 $
19.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{6x + 3}}{{{x^2} + 4}}dx} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_0^2 {\dfrac{{6x + 3}}{{{x^2} + 4}}dx} $
$ \int {\dfrac{{6x + 3}}{{{x^2} + 4}}dx} $
$ = 3\int {\dfrac{{2x + 1}}{{{x^2} + 4}}dx} $
$ = 3\int {\dfrac{{2x + 1}}{{{x^2} + 4}}dx} $
$ = 3\int {\dfrac{{2x}}{{{x^2} + 4}}dx} + 3\int {\dfrac{1}{{{x^2} + 4}}dx} $
$ = 3\log ({x^2} + 4) + \dfrac{3}{2}{\tan ^{ - 1}}\dfrac{x}{2} $
$ = F(x) $
By second fundamental theorem of calculus, we obtain
$ I = F(3) - F(2) $
$= 3\left[ {\log \left( {{2^2} + 4} \right) - \dfrac{3}{2}{{\tan }^{ - 1}}\left( {\dfrac{2}{2}} \right)} \right] - \left[ {3\log (0 + 4) + \dfrac{3}{2}{{\tan }^{ - 1}}(\dfrac{0}{2})} \right] $
$ = 3\left[ {\log 8} \right] + \dfrac{3}{2}{\tan ^{ - 1}}1 - 3\log 4 - \dfrac{3}{2}{\tan ^{ - 1}}0 $
$ = 3\log 8 + \dfrac{3}{2}{\tan ^{ - 1}}1 - 3\log 4 - \dfrac{3}{2}{\tan ^{ - 1}}0 $
$= 3\log 8 + \dfrac{3}{2}\left( {\dfrac{\pi }{4}} \right) - 3\log 4 - 0 $
$= 3\log \left( {\dfrac{8}{4}} \right) + \dfrac{{3\pi }}{8} $
$= 3\log 2 + \dfrac{{3\pi }}{8} $
20.Integrate the given integral $\int\limits_0^1 {\left( {x{e^x} - \sin \dfrac{{\pi x}}{4}} \right)dx} $
Ans: To simplify the question let us suppose,
$I = \int\limits_0^1 {\left( {x{e^x} - \sin \dfrac{{\pi x}}{4}} \right)dx} $
$ \int\limits_0^1 {\left( {x{e^x} - \sin \dfrac{{\pi x}}{4}} \right)dx} = x\int {{e^x}dx - \int {\left\{ {\left( {\dfrac{d}{{dx}}x} \right)\int {{e^x}dx} } \right\}dx + \left\{ {\dfrac{{ - \cos \dfrac{{\pi x}}{4}}}{{\dfrac{\pi }{4}}}} \right\}} } $
$ = x{e^x} - x\int {{e^x}dx - \dfrac{4}{\pi }\cos \pi \dfrac{x}{4}} $
$ = F(x) $
By second fundamental theorem of calculus, we obtain
$ I = F(1) - F(0) $
$= \left( {{e^1} - {e^1} - \dfrac{4}{\pi }\cos \pi \dfrac{1}{4}} \right) - \left( {0.{e^0} - {e^0} - \dfrac{4}{\pi }\cos 0} \right) $
$ = e - e - \dfrac{4}{\pi }\left( {\dfrac{1}{{\sqrt 2 }}} \right) + 1 + \dfrac{4}{\pi } $
$= 1 + \dfrac{4}{\pi } - \dfrac{{2\sqrt 2 }}{\pi } $
21.Integrate the given integral $\int\limits_1^{\sqrt 3 } {\dfrac{{dx}}{{1 + {x^2}}}} $
\[\dfrac{\pi }{3}\]
$\dfrac{{2\pi }}{3}$
$\dfrac{\pi }{6}$
$\dfrac{\pi }{{12}}$
Ans: To simplify the question let us suppose,
$ \int {\dfrac{{dx}}{{1 + {x^2}}}} = {\tan ^{ - 1}}x $
By second fundamental theorem of calculus, we obtain
$ \int\limits_1^{\sqrt 3 } {\dfrac{{dx}}{{1 + {x^2}}}} = F(\sqrt 3 ) - F(1) $
$ = {\tan ^{ - 1}}\sqrt 3 - {\tan ^{^{ - 1}}}1 $
$= \dfrac{\pi }{3} - \dfrac{\pi }{4} $
$ = \dfrac{\pi }{{12}} $
Hence, the correct Answer is $\dfrac{\pi }{{12}}$
22.Integrate the given integral$\int {\dfrac{{dx}}{{4 + 9{x^2}}}} = \int {\dfrac{{dx}}{{{{(2)}^2} + {{(3x)}^2}}}}$
$\dfrac{\pi }{6} $
$\dfrac{\pi }{{12}} $
$\dfrac{\pi }{{24}} $
$\dfrac{\pi }{4} $
equals
Ans: To simplify the question let us suppose,
3x = t
$\Rightarrow 3dx = dt$
$\int {\dfrac{{dx}}{{{{(2)}^2} + {{(3x)}^2}}}} = \dfrac{1}{3}\int {\dfrac{{dt}}{{{{(2)}^2} + {{(t)}^2}}}} $
$ = \dfrac{1}{3}\left[ {\dfrac{1}{2}{{\tan }^{ - 1}}\dfrac{t}{2}} \right] $
$ = \dfrac{1}{6}{\tan ^{ - 1}}\left( {\dfrac{{3x}}{2}} \right) $
$= F(x) $
By second fundamental theorem of calculus,
$\int\limits_0^{\dfrac{2}{3}} {\dfrac{{dx}}{{4 + 9{x^2}}}} = F\left( {\dfrac{2}{3}} \right) - F(0) $
$= \dfrac{1}{6}{\tan ^{ - 1}}\left( {\dfrac{3}{2} \times \dfrac{2}{3}} \right) - \dfrac{1}{6}{\tan ^{^{ - 1}}}0 $
$ = \dfrac{1}{6}{\tan ^{ - 1}}1 - 0 $
$ = \dfrac{1}{6} \times \dfrac{\pi }{4} $
$ = \dfrac{\pi }{{24}} $
Hence, the correct answer is C.$\dfrac{\pi }{{24}}$
Conclusion
NCERT Solutions for Exercise 7.8 Maths Class 12 Chapter 7 - Integrals provide detailed explanations to all of the questions in the NCERT textbook. This exercise contains 22 questions with fully solved solutions. It includes a range of exercises that help students understand how integrals can be applied in real-world circumstances. With a focus on practical integration methods and their applications, Exercise 7.8 provides students with the knowledge they require to succeed in mathematics exams.
Class 12 Maths Chapter 7: Exercises Breakdown
S.No. | Chapter 7 - Integrals Exercises in PDF Format | |
1 | Class 12 Maths Chapter 7 Exercise 7.1 - 22 Questions & Solutions (21 Short Answers, 1 MCQs) | |
2 | Class 12 Maths Chapter 7 Exercise 7.2 - 39 Questions & Solutions (37 Short Answers, 2 MCQs) | |
3 | Class 12 Maths Chapter 7 Exercise 7.3 - 24 Questions & Solutions (22 Short Answers, 2 MCQs) | |
4 | Class 12 Maths Chapter 7 Exercise 7.4 - 25 Questions & Solutions (23 Short Answers, 2 MCQs) | |
5 | Class 12 Maths Chapter 7 Exercise 7.5 - 23 Questions & Solutions (21 Short Answers, 2 MCQs) | |
6 | Class 12 Maths Chapter 7 Exercise 7.6 - 24 Questions & Solutions (22 Short Answers, 2 MCQs) | |
7 | Class 12 Maths Chapter 7 Exercise 7.7 - 11 Questions & Solutions (9 Short Answers, 2 MCQs) | |
8 | Class 12 Maths Chapter 7 Exercise 7.9 - 22 Questions & Solutions (20 Short Answers, 2 MCQs) | |
9 | Class 12 Maths Chapter 7 Exercise 7.10 - 10 Questions & Solutions (8 Short Answers, 2 MCQs) | |
10 | Class 12 Maths Chapter 7 Miscellaneous Exercise - 40 Questions & Solutions |
CBSE Class 12 Maths Chapter 7 Other Study Materials
S.No. | Important Links for Chapter 7 Integrals |
1 | |
2 | |
3 | |
4 |
NCERT Solutions for Class 12 Maths | Chapter-wise List
Given below are the chapter-wise NCERT Class 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.
S.No. | NCERT Solutions Class 12 Maths Chapter-wise List |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
Related Links for NCERT Class 12 Maths in Hindi
Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.
S.No. | Related NCERT Solutions for Class 12 Maths |
1 | |
2 |
Important Related Links for NCERT Class 12 Maths
S.No | Important Resources Links for Class 12 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |

















