
\[7 \times 11 \times 13 \times 15 + 15\] is a prime number. Is it true? Justify.
Answer
519k+ views
Hint:
Prime number: A prime number is a natural number greater than 1 that has no positive integer divisors other than 1 and itself. For example, 7 is a prime number because it has no positive divisors other than 1 and 7 itself.
Complete step by step solution:
Given number: \[7 \times 11 \times 13 \times 15 + 15\]
Simplify the given number
\[
\Rightarrow 15\left( {7 \times 11 \times 13 \times 1 + 1} \right) \\
\Rightarrow 15\left( {1001 + 1} \right) \\
\Rightarrow 15\left( {1002} \right) \\
\]
Let the product of the number be (P)
\[ \Rightarrow \left( P \right) = 15\left( {1002} \right)\]
A prime number is a positive integer that has two factors. One factor will be 1 and another factor will be the number itself. If any number has exactly two factors, then the number will be a prime number else a composite number.
But here we can clearly see that the number has two other factors \[15\] and \[1002\] other than 1 and itself \[\left( P \right)\].
Hence, we can conclude that the given number\[7 \times 11 \times 13 + 13\]is a composite number and not a prime number.
Note:
If any number \[\left( N \right)\] can be written \[\left( N \right) = m \times n\]; where \[m, n \ne 1\], will have \[m\] and \[n\] as factors of that number other than 1 and itself. This type of numbers will always form composite numbers.
Prime number: A prime number is a natural number greater than 1 that has no positive integer divisors other than 1 and itself. For example, 7 is a prime number because it has no positive divisors other than 1 and 7 itself.
Complete step by step solution:
Given number: \[7 \times 11 \times 13 \times 15 + 15\]
Simplify the given number
\[
\Rightarrow 15\left( {7 \times 11 \times 13 \times 1 + 1} \right) \\
\Rightarrow 15\left( {1001 + 1} \right) \\
\Rightarrow 15\left( {1002} \right) \\
\]
Let the product of the number be (P)
\[ \Rightarrow \left( P \right) = 15\left( {1002} \right)\]
A prime number is a positive integer that has two factors. One factor will be 1 and another factor will be the number itself. If any number has exactly two factors, then the number will be a prime number else a composite number.
But here we can clearly see that the number has two other factors \[15\] and \[1002\] other than 1 and itself \[\left( P \right)\].
Hence, we can conclude that the given number\[7 \times 11 \times 13 + 13\]is a composite number and not a prime number.
Note:
If any number \[\left( N \right)\] can be written \[\left( N \right) = m \times n\]; where \[m, n \ne 1\], will have \[m\] and \[n\] as factors of that number other than 1 and itself. This type of numbers will always form composite numbers.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
How many seconds are there in an hour class 6 maths CBSE

Write 10 sentences about the flower Rose in Englis class 6 english CBSE

What is the opposite gender of Gander class 6 english CBSE

1 lakh Thousand class 6 maths CBSE

What is a joint family A Two or more families live class 6 social science CBSE

What are cardinal points and intermediate directio class 6 social science CBSE
