
A closed organ pipe and an open organ pipe are tuned to the same fundamental frequency. Determine the ratio of their lengths.
A. 1 : 1
B. 2 : 1
C. 1 : 4
D. 1 : 2
Answer
168.9k+ views
Hint: In this question, we need to find the ratio of closed and open organ pipes if they are tuned to the same frequency. So, we need to use the following formula. After, equating the equations for closed organ pipe and open organ pipe, we will get the desired result.
Formula used:
The formula for fundamental frequency for closed organ pipe is given by
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Similarly, the formula for fundamental frequency for open organ pipe is given by
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Where, \[{f_c}\] is the fundamental frequency for closed organ pipe, \[{f_o}\] is the fundamental frequency for open organ pipe, \[v\] is the speed of wave, \[{L_c}\] is the length of closed organ pipe and \[{L_o}\] is the length of open organ pipe.
Complete step by step solution:
We know that, the basic frequency for closed organ pipe is,
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Also, the basic frequency for closed organ pipe is,
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Here, speed is constant.
So, according to the given condition, both the pipes are tuned to the same frequency.Thus, we get
\[{f_c} = {f_o}\]
So, \[\dfrac{v}{{4{L_c}}} = \dfrac{v}{{2{L_o}}}\]
By simplifying, we get
\[\dfrac{1}{{4{L_c}}} = \dfrac{1}{{2{L_o}}}\]
\[\Rightarrow 4{L_c} = 2{L_o}\]
\[\Rightarrow 2{L_c} = {L_o}\]
By simplifying, further, we get
\[\dfrac{{{L_c}}}{{{L_o}}} = \dfrac{1}{2}\]
That means \[{L_c}:{L_o} = 1:2\]
Hence, the ratio of closed and open organ pipes, if they are tuned to the same frequency, is 1:2.
Therefore, the correct option is (D).
Note: Many students make mistakes in writing the formula for the fundamental frequency of a pipe. Consequently, the end result may get wrong. Here, the simplification part is also important for getting the final answer.
Formula used:
The formula for fundamental frequency for closed organ pipe is given by
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Similarly, the formula for fundamental frequency for open organ pipe is given by
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Where, \[{f_c}\] is the fundamental frequency for closed organ pipe, \[{f_o}\] is the fundamental frequency for open organ pipe, \[v\] is the speed of wave, \[{L_c}\] is the length of closed organ pipe and \[{L_o}\] is the length of open organ pipe.
Complete step by step solution:
We know that, the basic frequency for closed organ pipe is,
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Also, the basic frequency for closed organ pipe is,
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Here, speed is constant.
So, according to the given condition, both the pipes are tuned to the same frequency.Thus, we get
\[{f_c} = {f_o}\]
So, \[\dfrac{v}{{4{L_c}}} = \dfrac{v}{{2{L_o}}}\]
By simplifying, we get
\[\dfrac{1}{{4{L_c}}} = \dfrac{1}{{2{L_o}}}\]
\[\Rightarrow 4{L_c} = 2{L_o}\]
\[\Rightarrow 2{L_c} = {L_o}\]
By simplifying, further, we get
\[\dfrac{{{L_c}}}{{{L_o}}} = \dfrac{1}{2}\]
That means \[{L_c}:{L_o} = 1:2\]
Hence, the ratio of closed and open organ pipes, if they are tuned to the same frequency, is 1:2.
Therefore, the correct option is (D).
Note: Many students make mistakes in writing the formula for the fundamental frequency of a pipe. Consequently, the end result may get wrong. Here, the simplification part is also important for getting the final answer.
Recently Updated Pages
Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

Trending doubts
Uniform Acceleration

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Instantaneous Velocity - Formula based Examples for JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Charging and Discharging of Capacitor

Class 9 Physics MCQs: Chapter-wise Questions, Answers & PDFs

Current Loop as Magnetic Dipole and Its Derivation for JEE

The resultant of vec A and vec B is perpendicular to class 11 physics JEE_Main

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

Work Energy and Power Class 11 Notes: CBSE Physics Chapter 5
