
A curve parametrically given by \[x=t+{{t}^{3}}\]and \[y={{t}^{2}}\], where \[t\in R\]. For what value(s) of \[t\] is \[\dfrac{dy}{dx}=\dfrac{1}{2}\]?
(A) \[\dfrac{1}{3}\]
(B) \[2\]
(C) \[3\]
(D) \[1\]
Answer
557.1k+ views
Hint: If \[x=f(t)\] and \[y=g(t)\] then \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\div \dfrac{dx}{dt}\].
Complete step-by-step answer:
The given equation of the curve is \[x=t+{{t}^{3}}\]and \[y={{t}^{2}}\].
We can clearly see that \[y\] and \[x\] are not given in terms of each other but in terms of another parameter $t$ . Hence, \[\dfrac{dy}{dx}\] cannot be directly calculated.
So, we can write \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\cdot \dfrac{dt}{dx}.........\]equation\[(1)\]
Now, to find \[\dfrac{dy}{dx}\], we need to find the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\].
Now, we have \[y={{t}^{2}}\]
We will differentiate \[y\] with respect to \[t\].
On differentiating \[y\] with respect to \[t\], we get ,
$\Rightarrow$ \[\dfrac{dy}{dt}=\dfrac{d}{dt}({{t}^{2}})=2t\]
Now, we will differentiate \[x\] with respect to \[t\].
On differentiating \[x\] with respect to \[t\], we get,
$\Rightarrow$ \[\dfrac{dx}{dt}=\dfrac{d}{dt}(t+{{t}^{3}})=1+3{{t}^{2}}\]
Now, we know inverse function theorem of differentiation says that if \[x=f(t)\] and \[\dfrac{dx}{dt}=x'\] then, \[\dfrac{dt}{dx}=t'=\dfrac{1}{x'}\] .
So, we can write \[\dfrac{dt}{dx}=\dfrac{1}{\dfrac{dx}{dt}}=\dfrac{1}{1+3{{t}^{2}}}\]
Now, to find the value of \[\dfrac{dy}{dx}\] , we will substitute the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\]in equation\[(1)\].
On substituting the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\]in equation\[(1)\], we get ,\[\]
$\Rightarrow$ \[\dfrac{dy}{dx}=2t\times \dfrac{1}{1+3{{t}^{2}}}\]
\[=\dfrac{2t}{1+3{{t}^{2}}}\]
Now, it is given that the value of \[\dfrac{dy}{dx}\] is equal to \[\dfrac{1}{2}\].
So, we can write
\[\begin{align}
& \dfrac{2t}{1+3{{t}^{2}}}=\dfrac{1}{2} \\
& \Rightarrow 4t=1+3{{t}^{2}} \\
\end{align}\]
$\Rightarrow$ \[3{{t}^{2}}-4t+1=0\]
Clearly, it is a quadratic equation in \[t\].
Now, we will solve this quadratic equation by factorisation method.
\[3{{t}^{2}}-4t+1=0\]
\[\Rightarrow 3{{t}^{2}}-3t-t+1=0\]
\[\Rightarrow 3t(t-1)-1(t-1)=0\]
\[\Rightarrow (3t-1)(t-1)=0\]
\[\Rightarrow t=\dfrac{1}{3}\]or \[t=1\]
Hence , the values of \[t\] for \[\dfrac{dy}{dx}\] to be equal to \[\dfrac{1}{2}\] are \[\dfrac{1}{3}\] and \[1\].
Answers are options (D), (A).
Note: \[3{{t}^{2}}-4t+1=0\] can alternatively be solved using the quadratic formula.
We know, for a quadratic equation given by \[a{{x}^{2}}+bx+c=0\], the values of \[x\] satisfying the equation are known as the roots of the equation and are given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] .
So , \[t=\dfrac{-(-4)\pm \sqrt{{{(-4)}^{2}}-4(3)(1)}}{2(3)}\]
\[\Rightarrow t=\dfrac{4\pm \sqrt{16-12}}{6}\]
\[\Rightarrow t=\dfrac{4\pm 2}{6}\]
\[\Rightarrow t=\dfrac{6}{6},\dfrac{2}{6}\]
\[\Rightarrow t=1,\dfrac{1}{3}\]
Hence, the values of \[t\] satisfying the equation \[3{{t}^{2}}-4t+1=0\] are \[t=1,\dfrac{1}{3}\].
Complete step-by-step answer:
The given equation of the curve is \[x=t+{{t}^{3}}\]and \[y={{t}^{2}}\].
We can clearly see that \[y\] and \[x\] are not given in terms of each other but in terms of another parameter $t$ . Hence, \[\dfrac{dy}{dx}\] cannot be directly calculated.
So, we can write \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\cdot \dfrac{dt}{dx}.........\]equation\[(1)\]
Now, to find \[\dfrac{dy}{dx}\], we need to find the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\].
Now, we have \[y={{t}^{2}}\]
We will differentiate \[y\] with respect to \[t\].
On differentiating \[y\] with respect to \[t\], we get ,
$\Rightarrow$ \[\dfrac{dy}{dt}=\dfrac{d}{dt}({{t}^{2}})=2t\]
Now, we will differentiate \[x\] with respect to \[t\].
On differentiating \[x\] with respect to \[t\], we get,
$\Rightarrow$ \[\dfrac{dx}{dt}=\dfrac{d}{dt}(t+{{t}^{3}})=1+3{{t}^{2}}\]
Now, we know inverse function theorem of differentiation says that if \[x=f(t)\] and \[\dfrac{dx}{dt}=x'\] then, \[\dfrac{dt}{dx}=t'=\dfrac{1}{x'}\] .
So, we can write \[\dfrac{dt}{dx}=\dfrac{1}{\dfrac{dx}{dt}}=\dfrac{1}{1+3{{t}^{2}}}\]
Now, to find the value of \[\dfrac{dy}{dx}\] , we will substitute the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\]in equation\[(1)\].
On substituting the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\]in equation\[(1)\], we get ,\[\]
$\Rightarrow$ \[\dfrac{dy}{dx}=2t\times \dfrac{1}{1+3{{t}^{2}}}\]
\[=\dfrac{2t}{1+3{{t}^{2}}}\]
Now, it is given that the value of \[\dfrac{dy}{dx}\] is equal to \[\dfrac{1}{2}\].
So, we can write
\[\begin{align}
& \dfrac{2t}{1+3{{t}^{2}}}=\dfrac{1}{2} \\
& \Rightarrow 4t=1+3{{t}^{2}} \\
\end{align}\]
$\Rightarrow$ \[3{{t}^{2}}-4t+1=0\]
Clearly, it is a quadratic equation in \[t\].
Now, we will solve this quadratic equation by factorisation method.
\[3{{t}^{2}}-4t+1=0\]
\[\Rightarrow 3{{t}^{2}}-3t-t+1=0\]
\[\Rightarrow 3t(t-1)-1(t-1)=0\]
\[\Rightarrow (3t-1)(t-1)=0\]
\[\Rightarrow t=\dfrac{1}{3}\]or \[t=1\]
Hence , the values of \[t\] for \[\dfrac{dy}{dx}\] to be equal to \[\dfrac{1}{2}\] are \[\dfrac{1}{3}\] and \[1\].
Answers are options (D), (A).
Note: \[3{{t}^{2}}-4t+1=0\] can alternatively be solved using the quadratic formula.
We know, for a quadratic equation given by \[a{{x}^{2}}+bx+c=0\], the values of \[x\] satisfying the equation are known as the roots of the equation and are given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] .
So , \[t=\dfrac{-(-4)\pm \sqrt{{{(-4)}^{2}}-4(3)(1)}}{2(3)}\]
\[\Rightarrow t=\dfrac{4\pm \sqrt{16-12}}{6}\]
\[\Rightarrow t=\dfrac{4\pm 2}{6}\]
\[\Rightarrow t=\dfrac{6}{6},\dfrac{2}{6}\]
\[\Rightarrow t=1,\dfrac{1}{3}\]
Hence, the values of \[t\] satisfying the equation \[3{{t}^{2}}-4t+1=0\] are \[t=1,\dfrac{1}{3}\].
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
