
A particle in a certain conservative force field has a potential energy given by$U = \dfrac{{20xy}}{z}$. The force exerted on it is:
A. $\left( {\dfrac{{20y}}{z}} \right)\hat i + \left( {\dfrac{{20x}}{z}} \right)\hat j + \left( {\dfrac{{20xy}}{{{z^2}}}} \right)\hat k$
B. $ - \left( {\dfrac{{20y}}{z}} \right)\hat i - \left( {\dfrac{{20x}}{z}} \right)\hat j + \left( {\dfrac{{20xy}}{{{z^2}}}} \right)\hat k$
C. $ - \left( {\dfrac{{20y}}{z}} \right)\hat i - \left( {\dfrac{{20x}}{z}} \right)\hat j - \left( {\dfrac{{20xy}}{{{z^2}}}} \right)\hat k$
D. $\left( {\dfrac{{20y}}{z}} \right)\hat i + \left( {\dfrac{{20x}}{z}} \right)\hat j - \left( {\dfrac{{20xy}}{{{z^2}}}} \right)\hat k$
Answer
524.1k+ views
Hint:-The potential energy is the energy which an object attains at a particular position in its motion. The force due to potential energy is the force required to move the object from the reference point to a position which is at a distance r from the reference point.
Formula used: The formula of the force exerted by a particle in conservative field having a potential energy is given by,
$F = - \nabla U$
Where $\nabla $ is equal to $\nabla = \dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k$ and $U$ is the potential energy of the particle. Also$\hat i$,$\hat j$ and $\hat k$ are directions representing x-direction ,y-direction and z-direction.
Complete step-by-step solution
It is given that the potential energy of a particle is equal to $U = \dfrac{{20xy}}{z}$ and we have to find the force that is exerted on the particle.
As the force exerted on the particle is given by,
$F = - \nabla U$
Where $\nabla $ is equal to $\nabla = \dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k$ and $U$ is the potential energy of the particle.
Therefore, the force is given by,
$ \Rightarrow F = - \nabla U$
Replace the value of potential energy in the above equation and the differentiating it partially.
$ \Rightarrow F = - \nabla \left( {\dfrac{{20xy}}{z}} \right)$
$ \Rightarrow F = - \left( {\dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k} \right) \cdot \left( {\dfrac{{20xy}}{z}} \right)$
After differentiating the potential energy we get,
$ \Rightarrow F = - \left( {\dfrac{{20y}}{z}\hat i + \dfrac{{20x}}{z}\hat j - \dfrac{{20xy}}{{{z^2}}}\hat k} \right)$
Solving furthermore we get,
$ \Rightarrow F = - \dfrac{{20y}}{z}\hat i - \dfrac{{20x}}{z}\hat j + \dfrac{{20xy}}{{{z^2}}}\hat k$.
The force applied on the particle is given by$F = - \dfrac{{20y}}{z}\hat i - \dfrac{{20x}}{z}\hat j + \dfrac{{20xy}}{{{z^2}}}\hat k$. The correct answer for this problem is option B.
Note:- It is important for students to differentiate the potential energy with respect to x, y and z with care as it is not a normal process of differentiation but this is the partial differentiation of the potential energy. The partial differential is done such that if a given term is differentiated with respect to x then every term except x is taken as constant.
Formula used: The formula of the force exerted by a particle in conservative field having a potential energy is given by,
$F = - \nabla U$
Where $\nabla $ is equal to $\nabla = \dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k$ and $U$ is the potential energy of the particle. Also$\hat i$,$\hat j$ and $\hat k$ are directions representing x-direction ,y-direction and z-direction.
Complete step-by-step solution
It is given that the potential energy of a particle is equal to $U = \dfrac{{20xy}}{z}$ and we have to find the force that is exerted on the particle.
As the force exerted on the particle is given by,
$F = - \nabla U$
Where $\nabla $ is equal to $\nabla = \dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k$ and $U$ is the potential energy of the particle.
Therefore, the force is given by,
$ \Rightarrow F = - \nabla U$
Replace the value of potential energy in the above equation and the differentiating it partially.
$ \Rightarrow F = - \nabla \left( {\dfrac{{20xy}}{z}} \right)$
$ \Rightarrow F = - \left( {\dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k} \right) \cdot \left( {\dfrac{{20xy}}{z}} \right)$
After differentiating the potential energy we get,
$ \Rightarrow F = - \left( {\dfrac{{20y}}{z}\hat i + \dfrac{{20x}}{z}\hat j - \dfrac{{20xy}}{{{z^2}}}\hat k} \right)$
Solving furthermore we get,
$ \Rightarrow F = - \dfrac{{20y}}{z}\hat i - \dfrac{{20x}}{z}\hat j + \dfrac{{20xy}}{{{z^2}}}\hat k$.
The force applied on the particle is given by$F = - \dfrac{{20y}}{z}\hat i - \dfrac{{20x}}{z}\hat j + \dfrac{{20xy}}{{{z^2}}}\hat k$. The correct answer for this problem is option B.
Note:- It is important for students to differentiate the potential energy with respect to x, y and z with care as it is not a normal process of differentiation but this is the partial differentiation of the potential energy. The partial differential is done such that if a given term is differentiated with respect to x then every term except x is taken as constant.
Recently Updated Pages
Physics and Measurement Mock Test 2025 – Practice Questions & Answers

NCERT Solutions For Class 5 English Marigold - The Little Bully

NCERT Solutions For Class 12 Maths Three Dimensional Geometry Exercise 11.1

NCERT Solutions For Class 11 English Woven Words (Poem) - Ajamil And The Tigers

NCERT Solutions For Class 6 Hindi Durva - Bhaaloo

NCERT Solutions For Class 12 Physics In Hindi - Wave Optics

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
