
A pole is standing erect on the ground which is horizontal. The tip of the pole is tied right with a rope of $\sqrt {12} m$ to a point on the ground. if the rope is making 30° angle with the horizontal, then the height of the pole is
A. 2$\sqrt 3 $m
B. 3$\sqrt 2 $ m
C. 3m
D. $\sqrt 3 $m
Answer
543.6k+ views
Hint: In this question first of all make a diagram to get a visual picture of the problem, then assume the height to be H. Now use properties of the trigonometric ratios i.e. in this case Sin$\theta $=$\dfrac{{Perpendicular}}{{{\text{Hypotenuse}}}}$. This will help you to find the height (perpendicular).
Complete step-by-step answer:
Let the height of the pole be H metres
According to the question AC=$\sqrt {12} m$
We know by basic properties of trigonometric ratios that Sin$\theta $=$\dfrac{{Perpendicular}}{{{\text{Hypotenuse}}}}$
In triangle ABC,
Sin 30\[^0\]=$\dfrac{H}{{AC}}$
Sin 30\[^0\] = $\dfrac{H}{{\sqrt {12} }}$
We know that Sin 30\[^0\] = $\dfrac{1}{2}$
$\dfrac{1}{2}$=$\dfrac{H}{{\sqrt {12} }}$
H= $\dfrac{{\sqrt {12} }}{2}$
H=$\dfrac{{\sqrt {4 \times 3} }}{2}$
H=$\dfrac{{2\sqrt 3 }}{2}$
H=$\sqrt 3 $
So, the height of the triangle is $\sqrt 3 $m.
Note: The ratios of the sides of a right triangle are called trigonometric ratios. There are six trigonometric ratios, sine, cosine, tangent, cosecant, secant and cotangent. These six trigonometric ratios are abbreviated as sin, cos, tan, csc, sec, cot.
Complete step-by-step answer:
Let the height of the pole be H metres
According to the question AC=$\sqrt {12} m$
We know by basic properties of trigonometric ratios that Sin$\theta $=$\dfrac{{Perpendicular}}{{{\text{Hypotenuse}}}}$
In triangle ABC,
Sin 30\[^0\]=$\dfrac{H}{{AC}}$
Sin 30\[^0\] = $\dfrac{H}{{\sqrt {12} }}$
We know that Sin 30\[^0\] = $\dfrac{1}{2}$
$\dfrac{1}{2}$=$\dfrac{H}{{\sqrt {12} }}$
H= $\dfrac{{\sqrt {12} }}{2}$
H=$\dfrac{{\sqrt {4 \times 3} }}{2}$
H=$\dfrac{{2\sqrt 3 }}{2}$
H=$\sqrt 3 $
So, the height of the triangle is $\sqrt 3 $m.

Note: The ratios of the sides of a right triangle are called trigonometric ratios. There are six trigonometric ratios, sine, cosine, tangent, cosecant, secant and cotangent. These six trigonometric ratios are abbreviated as sin, cos, tan, csc, sec, cot.
Recently Updated Pages
Physics and Measurement Mock Test 2025 – Practice Questions & Answers

NCERT Solutions For Class 5 English Marigold - The Little Bully

NCERT Solutions For Class 12 Maths Three Dimensional Geometry Exercise 11.1

NCERT Solutions For Class 11 English Woven Words (Poem) - Ajamil And The Tigers

NCERT Solutions For Class 6 Hindi Durva - Bhaaloo

NCERT Solutions For Class 12 Physics In Hindi - Wave Optics

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

When the President submits his resignation to the VicePresident class 10 social science CBSE

Five things I will do to build a great India class 10 english CBSE

10 examples of evaporation in daily life with explanations
