
A profit of 20% is made on the goods when a discount of 10% is given on the list price. If a discount of 20% is allowed on the list price, the profit to be made will be
$
(A)\,6\% \\
(B)6\dfrac{2}{3}\% \\
(C)3\dfrac{1}{3}\% \\
(D)4\dfrac{2}{3}\% \\
$
Answer
479.4k+ views
Hint: Consider marked price as $100$ and apply conditions. First, we have to consider the market price as 100 and find the S.P, from which we are going to find it to equal with the 90% of L.P. We will be able to find the L.P, then after that we will be able to find the new selling price of the value. Then, from the new selling price, we will subtract it from the marked price and then we will find the gain.
Complete step by step solution:
First, let us consider the marked price as $Rs.\,100$, then in the question we are given that the profit is made is \[20\% \]n which means its selling price is $Rs.120$, this value is obtained when a discount of \[10\% \] is applied on the list price, so it means that
\[90\% {\text{ }}of\;L.P = Rs120\]
From, this we can find the value of L.P
From which we get
\[
\Rightarrow L.P = 120 \times \dfrac{{100}}{{90}} \\
\Rightarrow L.P = \dfrac{{400}}{3} \\
\], i
So, it’s asked that when a discount of \[20\% \] is applied what will the profit be made
New $S.P = 80\% \,\,of\,\dfrac{{400}}{3} = \dfrac{{320}}{3}$
We have found the new selling price, to find the gain/profit, we will subtract it from the original selling price.
$
\Rightarrow Gain = \dfrac{{320}}{3} - 100 \\
\Rightarrow 6\dfrac{2}{3}\% \\
$
Hence the correct answer is option ‘B’.
Note: Since, we have no initial value that is why we have to consider the marked price as 100, such that we can have further calculations easily and also, we have to read the question well, because we have to form an expression which gets us the final profit value.
Complete step by step solution:
First, let us consider the marked price as $Rs.\,100$, then in the question we are given that the profit is made is \[20\% \]n which means its selling price is $Rs.120$, this value is obtained when a discount of \[10\% \] is applied on the list price, so it means that
\[90\% {\text{ }}of\;L.P = Rs120\]
From, this we can find the value of L.P
From which we get
\[
\Rightarrow L.P = 120 \times \dfrac{{100}}{{90}} \\
\Rightarrow L.P = \dfrac{{400}}{3} \\
\], i
So, it’s asked that when a discount of \[20\% \] is applied what will the profit be made
New $S.P = 80\% \,\,of\,\dfrac{{400}}{3} = \dfrac{{320}}{3}$
We have found the new selling price, to find the gain/profit, we will subtract it from the original selling price.
$
\Rightarrow Gain = \dfrac{{320}}{3} - 100 \\
\Rightarrow 6\dfrac{2}{3}\% \\
$
Hence the correct answer is option ‘B’.
Note: Since, we have no initial value that is why we have to consider the marked price as 100, such that we can have further calculations easily and also, we have to read the question well, because we have to form an expression which gets us the final profit value.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Name 10 Living and Non living things class 9 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

On an outline map of India show its neighbouring c class 9 social science CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

How many faces edges vertices are there in the following class 9 maths CBSE
