
Calculate CFSE of the following complex:
${[Fe{(CN)_6}]^{4 - }}$
(A) $ - 0.4{\Delta _t}$
(B) $ - 2.4{\Delta _{\text{o}}}$
(C) $0.4{\Delta _{\text{o}}}$
(D) $0.6{\Delta _{\text{o}}}$
Answer
168.9k+ views
Hint: To find the CFSE, we need to fill the ${t_{2g}}$ and ${e_g}$ orbitals according to CFT ( crystal field theory). In the complex ${[Fe{(CN)_6}]^{4 - }}$, Iron ( $Fe$ ) is in $ + 2$ oxidation state and thus it is a $3{d^6}$ system. $CN$ is a strong field ligand and thus the complex will be a low spin complex and all the six electrons will be filled in ${t_{2g}}$ orbitals.
Complete step by step solution:
-Iron ($Fe$) has electronic configuration $3{d^6}4{s^2}$ in the ground state. But in the complex ${[Fe{(CN)_6}]^{4 - }}$, iron is in $ + 2$ oxidation state. Therefore, it will have configuration $3{d^6}4{s^0}$ . Also, the coordination number of iron is six, therefore the complex will have octahedral geometry.
-According to CFT( crystal field theory), five degenerate $d$ orbitals split into three ${t_{2g}}$ and two ${e_g}$ orbitals in the presence of ligands. This splitting of the degenerate levels due to the presence of ligands in a definite geometry is termed as crystal field splitting and the energy separation is denoted by ${\Delta _{\text{o}}}$ (the subscript o is for octahedral the energy of the two ${e_g}$ orbitals will increase by $\left( {\dfrac{3}{5}} \right){\Delta _{\text{o}}}$ and that of the three ${t_{2g}}$ will decrease by $\left( {\dfrac{2}{5}} \right){\Delta _{\text{o}}}$ . Thus, from here we get the formula for crystal field splitting energy i.e. CFSE and it is:
${\Delta _{\text{o}}} = {\text{no}}{\text{. of electrons in }}{{\text{t}}_{{\text{2g}}}} \times \left( {\dfrac{2}{5}} \right){\Delta _{\text{o}}} + {\text{no}}{\text{. of electrons in }}{{\text{e}}_g} \times \left( {\dfrac{3}{5}} \right){\Delta _{\text{o}}}$
Or, ${\Delta _{\text{o}}} = {\text{no}}{\text{. of electrons in }}{{\text{t}}_{{\text{2g}}}} \times ( - 0.4{\Delta _{\text{o}}}) + {\text{no}}{\text{. of electrons in }}{{\text{e}}_g} \times (0.6{\Delta _{\text{o}}})$
-In the complex, ${[Fe{(CN)_6}]^{4 - }}$, we have $CN$ as a ligand which is a strong field ligand. For strong field ligands, ${\Delta _{\text{o}}}$(CFSE) is greater than the pairing energy,P i.e. ${\Delta _{\text{o}}} > P$ and they form low spin complexes. Therefore, ${[Fe{(CN)_6}]^{4 - }}$will be a low spin complex and all the six electrons (since, $F{e^{ + 2}}$ is $3{d^6}$ system) will enter in ${t_{2g}}$ orbital. Thus, configuration of $F{e^{ + 2}}$ in the complex will be $t_{2g}^6e_g^0$ .
Now, CFSE of the complex:
Since, ${\Delta _{\text{o}}} = {\text{no}}{\text{. of electrons in }}{{\text{t}}_{{\text{2g}}}} \times ( - 0.4{\Delta _{\text{o}}}) + {\text{no}}{\text{. of electrons in }}{{\text{e}}_g} \times (0.6{\Delta _{\text{o}}})$
Therefore, ${\Delta _{\text{o}}} = 6 \times ( - 0.4{\Delta _{\text{o}}}) + 0 \times (0.6{\Delta _{\text{o}}}) = - 2.4{\Delta _{\text{o}}}$
Thus, option (B) is the correct answer.
Note: The crystal field splitting ${\Delta _{\text{o}}}$, depends upon the field produced by the ligand and charge on the metal ion. Some ligands produce strong field and are called strong field ligands while some produce weak field and are called weak field ligands. Ligands are generally arranged in a series called spectrochemical series, in the order of increasing field strength as given below:
${I^ - } < B{r^ - } < SC{N^ - } < C{l^ - } < {S^{2 - }} < {F^ - } < O{H^ - } < {C_2}{O_4}^{2 - } < {H_2}O < NC{S^ - } < edt{a^{4 - }} < N{H_3} < en < C{N^ - } < CO$
Complete step by step solution:
-Iron ($Fe$) has electronic configuration $3{d^6}4{s^2}$ in the ground state. But in the complex ${[Fe{(CN)_6}]^{4 - }}$, iron is in $ + 2$ oxidation state. Therefore, it will have configuration $3{d^6}4{s^0}$ . Also, the coordination number of iron is six, therefore the complex will have octahedral geometry.
-According to CFT( crystal field theory), five degenerate $d$ orbitals split into three ${t_{2g}}$ and two ${e_g}$ orbitals in the presence of ligands. This splitting of the degenerate levels due to the presence of ligands in a definite geometry is termed as crystal field splitting and the energy separation is denoted by ${\Delta _{\text{o}}}$ (the subscript o is for octahedral the energy of the two ${e_g}$ orbitals will increase by $\left( {\dfrac{3}{5}} \right){\Delta _{\text{o}}}$ and that of the three ${t_{2g}}$ will decrease by $\left( {\dfrac{2}{5}} \right){\Delta _{\text{o}}}$ . Thus, from here we get the formula for crystal field splitting energy i.e. CFSE and it is:
${\Delta _{\text{o}}} = {\text{no}}{\text{. of electrons in }}{{\text{t}}_{{\text{2g}}}} \times \left( {\dfrac{2}{5}} \right){\Delta _{\text{o}}} + {\text{no}}{\text{. of electrons in }}{{\text{e}}_g} \times \left( {\dfrac{3}{5}} \right){\Delta _{\text{o}}}$
Or, ${\Delta _{\text{o}}} = {\text{no}}{\text{. of electrons in }}{{\text{t}}_{{\text{2g}}}} \times ( - 0.4{\Delta _{\text{o}}}) + {\text{no}}{\text{. of electrons in }}{{\text{e}}_g} \times (0.6{\Delta _{\text{o}}})$
-In the complex, ${[Fe{(CN)_6}]^{4 - }}$, we have $CN$ as a ligand which is a strong field ligand. For strong field ligands, ${\Delta _{\text{o}}}$(CFSE) is greater than the pairing energy,P i.e. ${\Delta _{\text{o}}} > P$ and they form low spin complexes. Therefore, ${[Fe{(CN)_6}]^{4 - }}$will be a low spin complex and all the six electrons (since, $F{e^{ + 2}}$ is $3{d^6}$ system) will enter in ${t_{2g}}$ orbital. Thus, configuration of $F{e^{ + 2}}$ in the complex will be $t_{2g}^6e_g^0$ .
Now, CFSE of the complex:
Since, ${\Delta _{\text{o}}} = {\text{no}}{\text{. of electrons in }}{{\text{t}}_{{\text{2g}}}} \times ( - 0.4{\Delta _{\text{o}}}) + {\text{no}}{\text{. of electrons in }}{{\text{e}}_g} \times (0.6{\Delta _{\text{o}}})$
Therefore, ${\Delta _{\text{o}}} = 6 \times ( - 0.4{\Delta _{\text{o}}}) + 0 \times (0.6{\Delta _{\text{o}}}) = - 2.4{\Delta _{\text{o}}}$
Thus, option (B) is the correct answer.
Note: The crystal field splitting ${\Delta _{\text{o}}}$, depends upon the field produced by the ligand and charge on the metal ion. Some ligands produce strong field and are called strong field ligands while some produce weak field and are called weak field ligands. Ligands are generally arranged in a series called spectrochemical series, in the order of increasing field strength as given below:
${I^ - } < B{r^ - } < SC{N^ - } < C{l^ - } < {S^{2 - }} < {F^ - } < O{H^ - } < {C_2}{O_4}^{2 - } < {H_2}O < NC{S^ - } < edt{a^{4 - }} < N{H_3} < en < C{N^ - } < CO$
Recently Updated Pages
Hydrocarbons: Types, Formula, Structure & Examples Explained

Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Disproportionation Reaction: Definition, Example & JEE Guide

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Instantaneous Velocity - Formula based Examples for JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
