
Calculate the relativistic momentum of a particle of mass $1.76\times {{10}^{-27}}kg$ if the relativistic energy is equal to three times the rest energy.
a)$2.86\times {{10}^{-18}}kgm/s$
b)$9.68\times {{10}^{-18}}kgm/s$
c)$2.05\times 10kgm/s$
d)$1.29\times 10kgm/s$
Answer
521.4k+ views
Hint: Relativistic case is used when particle velocity is compared to the speed of light. The relativistic momentum is defined as the $\gamma $ times rest mass times velocity of the particle.
Formula used:
1. Relativistic momentum $p$ is,
$p=\gamma {{m}_{0}}v$
Here,$\gamma =\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$, $v$ is velocity of particle, $m$ rest mass of the particle,$c$ is speed of light i.e. $3\times {{10}^{8}}m/s$ .
2. Relativistic kinetic energy ${{E}_{k}}$,
${{E}_{k}}=\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}$
Here, ${{m}_{0}}{{c}^{2}}$ is rest mass energy ${{E}_{0}}$ of the particle.
Complete step by step answer:
You have given,
Mass ${{m}_{0}}=1.76\times {{10}^{-27}}kg$
The Relativistic kinetic energy ${{E}_{k}}$is three times the rest mass energy ${{E}_{0}}$,
i.e. ${{E}_{k}}=3{{E}_{0}}......(1)$
you have to find relativistic momentum $p$.
$p=\gamma {{m}_{0}}v......(2)$
To find the relativistic momentum $p$first you have to calculate the velocity $v$and the relativistic factor $\gamma $,
The relativistic kinetic energy ${{E}_{k}}$ ,
${{E}_{k}}=\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}......(3)$
The rest mass energy ${{E}_{0}}$ of the particle is
\[{{E}_{0}}={{m}_{0}}{{c}^{2}}......(4)\]
Put the values of equation 2 and 3 in equation 1,
$\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}=3{{m}_{0}}{{c}^{2}}$
Expand,
$\gamma {{m}_{0}}{{c}^{2}}-{{m}_{0}}{{c}^{2}}=3{{m}_{0}}{{c}^{2}}$
Solve for $\gamma $
$\begin{align}
& \gamma {{m}_{0}}{{c}^{2}}=4{{m}_{0}}{{c}^{2}} \\
& \Rightarrow \gamma =4......(5) \\
\end{align}$
Now, calculate velocity $v$,
You know,
$\gamma =\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$
Put value of $\gamma $
$4=\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$
Take reciprocal of equation,
$\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}=\dfrac{1}{4}$
Square both sides,
$1-\dfrac{{{v}^{2}}}{{{c}^{2}}}=\dfrac{1}{16}$
Simplify,
$\dfrac{{{v}^{2}}}{{{c}^{2}}}=\dfrac{15}{16}$
Solve for $v$, multiply both sides by ${{c}^{2}}$ and take square root,
$v=\sqrt{\dfrac{15}{16}}c......(5)$
Put the values of equation 5 and 6 in equation 2
$p=4\times 1.76\times {{10}^{-27}}\times \sqrt{\dfrac{15}{16}}3\times {{10}^{8}}$
$\therefore p=2.86\times {{10}^{-18}}kgm/s$.
So, the correct answer is “Option A”.
Note:
Students generally get confused with rest mass energy and rest mass kinetic energy.
So, keep clear in mind that rest mass kinetic energy means the energy of particle at rest i.e. kinetic energy is zero but the rest mass energy term comes from relativistic physics that is given by the Einstein formula of energy mass conservation,
i.e. rest mass energy \[{{E}_{0}}={{m}_{0}}{{c}^{2}}\]
Formula used:
1. Relativistic momentum $p$ is,
$p=\gamma {{m}_{0}}v$
Here,$\gamma =\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$, $v$ is velocity of particle, $m$ rest mass of the particle,$c$ is speed of light i.e. $3\times {{10}^{8}}m/s$ .
2. Relativistic kinetic energy ${{E}_{k}}$,
${{E}_{k}}=\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}$
Here, ${{m}_{0}}{{c}^{2}}$ is rest mass energy ${{E}_{0}}$ of the particle.
Complete step by step answer:
You have given,
Mass ${{m}_{0}}=1.76\times {{10}^{-27}}kg$
The Relativistic kinetic energy ${{E}_{k}}$is three times the rest mass energy ${{E}_{0}}$,
i.e. ${{E}_{k}}=3{{E}_{0}}......(1)$
you have to find relativistic momentum $p$.
$p=\gamma {{m}_{0}}v......(2)$
To find the relativistic momentum $p$first you have to calculate the velocity $v$and the relativistic factor $\gamma $,
The relativistic kinetic energy ${{E}_{k}}$ ,
${{E}_{k}}=\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}......(3)$
The rest mass energy ${{E}_{0}}$ of the particle is
\[{{E}_{0}}={{m}_{0}}{{c}^{2}}......(4)\]
Put the values of equation 2 and 3 in equation 1,
$\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}=3{{m}_{0}}{{c}^{2}}$
Expand,
$\gamma {{m}_{0}}{{c}^{2}}-{{m}_{0}}{{c}^{2}}=3{{m}_{0}}{{c}^{2}}$
Solve for $\gamma $
$\begin{align}
& \gamma {{m}_{0}}{{c}^{2}}=4{{m}_{0}}{{c}^{2}} \\
& \Rightarrow \gamma =4......(5) \\
\end{align}$
Now, calculate velocity $v$,
You know,
$\gamma =\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$
Put value of $\gamma $
$4=\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$
Take reciprocal of equation,
$\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}=\dfrac{1}{4}$
Square both sides,
$1-\dfrac{{{v}^{2}}}{{{c}^{2}}}=\dfrac{1}{16}$
Simplify,
$\dfrac{{{v}^{2}}}{{{c}^{2}}}=\dfrac{15}{16}$
Solve for $v$, multiply both sides by ${{c}^{2}}$ and take square root,
$v=\sqrt{\dfrac{15}{16}}c......(5)$
Put the values of equation 5 and 6 in equation 2
$p=4\times 1.76\times {{10}^{-27}}\times \sqrt{\dfrac{15}{16}}3\times {{10}^{8}}$
$\therefore p=2.86\times {{10}^{-18}}kgm/s$.
So, the correct answer is “Option A”.
Note:
Students generally get confused with rest mass energy and rest mass kinetic energy.
So, keep clear in mind that rest mass kinetic energy means the energy of particle at rest i.e. kinetic energy is zero but the rest mass energy term comes from relativistic physics that is given by the Einstein formula of energy mass conservation,
i.e. rest mass energy \[{{E}_{0}}={{m}_{0}}{{c}^{2}}\]
Recently Updated Pages
Physics and Measurement Mock Test 2025 – Practice Questions & Answers

NCERT Solutions For Class 5 English Marigold - The Little Bully

NCERT Solutions For Class 12 Maths Three Dimensional Geometry Exercise 11.1

NCERT Solutions For Class 11 English Woven Words (Poem) - Ajamil And The Tigers

NCERT Solutions For Class 6 Hindi Durva - Bhaaloo

NCERT Solutions For Class 12 Physics In Hindi - Wave Optics

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE
