
Check the commutativity and associativity of the following binary operation:
$' \odot '$ on Q defined by $a \odot b = {a^2} + {b^2}$ for all $a,b \in Q$.
Answer
551.4k+ views
Hint – Commutativity property means, $a \odot b = b \odot a$, where $' \odot '$ is a binary operation and associative property is $(a \odot b) \odot r = a \odot (b \odot r)$.
Complete step-by-step answer:
Given that $' \odot '$is a binary operation on Q defined by $a \odot b = {a^2} + {b^2}$ for all $a,b \in Q$.
We know-
Commutative property means, $a \odot b = b \odot a$.
Let’s check the commutative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow a \odot b = {a^2} + {b^2} \\
\Rightarrow b \odot a = {b^2} + {a^2} \\
\Rightarrow a \odot b = b \odot a \\
$
Therefore, the commutative property holds for a given binary operation on ‘Q’.
Now, we know –
Associative property is $(a \odot b) \odot r = a \odot (b \odot r)$.
Let’s check the associative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow (a \odot b) \odot r = ({a^2} + {b^2}) \odot r \\
\Rightarrow (a \odot b) \odot r = {({a^2} + {b^2})^2} + {r^2} - (1) \\
$
Now, $
a \odot (b \odot r) = a \odot ({b^2} + {r^2}) \\
\Rightarrow a \odot (b \odot r) = {a^2} + {({b^2} + {r^2})^2} - (2) \\
$
From equation (1) and (2), we can clearly say that associativity property doesn’t hold for the binary operation on ‘Q’.
Therefore, the given binary operation is commutative but not associative on Q.
Note – Whenever such types of questions appear, then first check for the commutative property of the binary operation given in the question and then check for the associativity property on Q. Proceed step by step to avoid any mistake.
Complete step-by-step answer:
Given that $' \odot '$is a binary operation on Q defined by $a \odot b = {a^2} + {b^2}$ for all $a,b \in Q$.
We know-
Commutative property means, $a \odot b = b \odot a$.
Let’s check the commutative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow a \odot b = {a^2} + {b^2} \\
\Rightarrow b \odot a = {b^2} + {a^2} \\
\Rightarrow a \odot b = b \odot a \\
$
Therefore, the commutative property holds for a given binary operation on ‘Q’.
Now, we know –
Associative property is $(a \odot b) \odot r = a \odot (b \odot r)$.
Let’s check the associative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow (a \odot b) \odot r = ({a^2} + {b^2}) \odot r \\
\Rightarrow (a \odot b) \odot r = {({a^2} + {b^2})^2} + {r^2} - (1) \\
$
Now, $
a \odot (b \odot r) = a \odot ({b^2} + {r^2}) \\
\Rightarrow a \odot (b \odot r) = {a^2} + {({b^2} + {r^2})^2} - (2) \\
$
From equation (1) and (2), we can clearly say that associativity property doesn’t hold for the binary operation on ‘Q’.
Therefore, the given binary operation is commutative but not associative on Q.
Note – Whenever such types of questions appear, then first check for the commutative property of the binary operation given in the question and then check for the associativity property on Q. Proceed step by step to avoid any mistake.
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
When and how did Canada eventually gain its independence class 10 social science CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

Which planet is known as the Watery Planet AJupiter class 10 social science CBSE

Give 10 examples of Material nouns Abstract nouns Common class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Who administers the oath of office to the President class 10 social science CBSE
