
Derive an expression for average power of an AC (alternating current) circuit.
Answer
460.2k+ views
Hint: Use values of potential difference and current of an AC circuit and find average work first then find power from it.
Compete step by step solution:
Average power in an AC circuit:
Let V be the alternating potential difference in the AC circuit given as: -
${\text{V = }}{{\text{V}}_{\text{o}}}{\text{sin}}\omega {\text{t}}$ ….. (i)
Then the AC current developed will lag by a phase angle $\phi $ then,
${\text{I = }}{{\text{I}}_{\text{o}}}{\text{sin}}\left( {\omega {\text{t - }}\phi } \right)$ ….. (ii)
Now by using equations (i) and (ii) we will find the total work done over a complete cycle of AC
${\text{W = }}\int\limits_{\text{0}}^{\text{T}} {{\text{VI}} \cdot dt} $ …. (iii)
Put value of V and I from equations (i) and (ii) in the equation (iii)
$\therefore {\text{W = }}\int\limits_{\text{0}}^{\text{T}} {{{\text{V}}_{\text{o}}}} {\text{sin}}\omega t \cdot {{\text{I}}_{\text{o}}}{\text{sin}}\left( {\omega t{\text{ - }}\phi } \right) \cdot dt$
${\text{ = }}{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}\int\limits_{\text{0}}^{\text{T}} {{\text{sin}}\omega t{\text{sin}}\left( {\omega t{\text{ - }}\phi } \right)} \cdot dt$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\int\limits_0^T {2\sin \omega t\sin \left( {\omega t - \phi } \right)} \cdot dt$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\int\limits_0^T {\cos \left( {\omega t - \omega t + \phi } \right)} - \cos \left( {\omega t + \omega t - \phi } \right) \cdot dt$ $\left[ {\because 2\sin {\text{A}}\sin {\text{B = }}\cos \left( {{\text{A - B}}} \right) - \cos \left( {{\text{A + B}}} \right)} \right]$
Thus,
${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\left[ {t\cos \phi - \sin \dfrac{{\left( {2\omega t - \phi } \right)}}{{2\omega }}} \right]_0^T$
${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\left[ {{\text{T}}\cos \phi } \right]$
So, ${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}} \cdot \cos \phi \cdot {\text{T}}$
$\therefore $ Average power in AC circuit over a complete cycle is given by: -
${\text{P = }}\dfrac{{\text{W}}}{{\text{T}}}$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\cos \phi $
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}}}{{\sqrt {\text{2}} }}\dfrac{{{{\text{I}}_{\text{o}}}}}{{\sqrt {\text{2}} }}\cos \phi $
$\therefore {\text{P = }}{{\text{V}}_{{\text{rms}}}}{{\text{I}}_{{\text{rms}}}}\cos \phi $
Note: Start a solution with the basic way to find the average work done by using its simple formula and be careful while using the properties and average value of trigonometric functions. At the end just convert work done into power.
Compete step by step solution:
Average power in an AC circuit:
Let V be the alternating potential difference in the AC circuit given as: -
${\text{V = }}{{\text{V}}_{\text{o}}}{\text{sin}}\omega {\text{t}}$ ….. (i)
Then the AC current developed will lag by a phase angle $\phi $ then,
${\text{I = }}{{\text{I}}_{\text{o}}}{\text{sin}}\left( {\omega {\text{t - }}\phi } \right)$ ….. (ii)
Now by using equations (i) and (ii) we will find the total work done over a complete cycle of AC
${\text{W = }}\int\limits_{\text{0}}^{\text{T}} {{\text{VI}} \cdot dt} $ …. (iii)
Put value of V and I from equations (i) and (ii) in the equation (iii)
$\therefore {\text{W = }}\int\limits_{\text{0}}^{\text{T}} {{{\text{V}}_{\text{o}}}} {\text{sin}}\omega t \cdot {{\text{I}}_{\text{o}}}{\text{sin}}\left( {\omega t{\text{ - }}\phi } \right) \cdot dt$
${\text{ = }}{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}\int\limits_{\text{0}}^{\text{T}} {{\text{sin}}\omega t{\text{sin}}\left( {\omega t{\text{ - }}\phi } \right)} \cdot dt$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\int\limits_0^T {2\sin \omega t\sin \left( {\omega t - \phi } \right)} \cdot dt$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\int\limits_0^T {\cos \left( {\omega t - \omega t + \phi } \right)} - \cos \left( {\omega t + \omega t - \phi } \right) \cdot dt$ $\left[ {\because 2\sin {\text{A}}\sin {\text{B = }}\cos \left( {{\text{A - B}}} \right) - \cos \left( {{\text{A + B}}} \right)} \right]$
Thus,
${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\left[ {t\cos \phi - \sin \dfrac{{\left( {2\omega t - \phi } \right)}}{{2\omega }}} \right]_0^T$
${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\left[ {{\text{T}}\cos \phi } \right]$
So, ${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}} \cdot \cos \phi \cdot {\text{T}}$
$\therefore $ Average power in AC circuit over a complete cycle is given by: -
${\text{P = }}\dfrac{{\text{W}}}{{\text{T}}}$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\cos \phi $
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}}}{{\sqrt {\text{2}} }}\dfrac{{{{\text{I}}_{\text{o}}}}}{{\sqrt {\text{2}} }}\cos \phi $
$\therefore {\text{P = }}{{\text{V}}_{{\text{rms}}}}{{\text{I}}_{{\text{rms}}}}\cos \phi $
Note: Start a solution with the basic way to find the average work done by using its simple formula and be careful while using the properties and average value of trigonometric functions. At the end just convert work done into power.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
