
Derive an expression for electric field intensity due to an electric dipole at a point on its axial line.
Answer
465.7k+ views
Hint: To derive the expression for electric field due to an electric dipole, consider AB is an electric dipole of two point charges – q and + q separated by small distance 2d and then consider that P is a point along the axial line of the dipole at a distance r from the midpoint O of the electric dipole.
Complete step-by-step answer:
Note:
Formula used: $E = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{q}{{{x^2}}}$
We have been asked to derive an expression for electric field intensity due to an electric dipole at a point on its axial line.
Now, let AB be an electric dipole of two-point charges -q and + q separated by a small distance 2d.
Also, consider that P is a point along the axial line of the dipole at a distance r from the midpoint O of the electric dipole.
Now, for better understanding refer the figure below:
The electric field at any point due to a charge q at a distance x is given by-
$ E = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{q}{{{x^2}}} $
Now, the electric field at the point P due to + q charge placed at B is given by-
$ {E_1} = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{q}{{{{(r - d)}^2}}} $ (along BP)
Here, (r – d) is the distance of point P from charge +q.
Also, the electric field at point due to – q charge placed at A-
$ {E_2} = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{q}{{{{(r + d)}^2}}} $ (along PA)
Therefore, the magnitude of the resultant electric field (E) acts in the direction of the vector with a greater magnitude.
The resultant electric field at P is-
$ E = {E_1} + ( - {E_2}) $
Putting the values; we get-
$ E = \left[ {\dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{q}{{{{(r - d)}^2}}} - \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{q}{{{{(r + d)}^2}}}} \right] $ (along BP)
Simplifying further we get-
$ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\left[ {\dfrac{1}{{{{(r - d)}^2}}} - \dfrac{1}{{{{(r + d)}^2}}}} \right] $
$ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\left[ {\dfrac{{{{(r + d)}^2} - {{(r - d)}^2}}}{{{{(r - d)}^2}{{(r + d)}^2}}}} \right] $
Now, we can write \[{(r - d)^2}{(r + d)^2} = {({r^2} - {d^2})^2}\]
So, we get-
$ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\left[{\dfrac{{{{(r)}^2} + {{(d)}^2} + 2rd - {{(r)}^2} - {{(d)}^2} + 2rd}}{{{{(r - d)}^2}{{(r + d)}^2}}}} \right] $
$ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\left[ {\dfrac{{4rd}}{{{{({r^2} - {d^2})}^2}}}} \right] $
Now, if the point P is far away from the dipole, then \[d \ll r\]
So, the electric field will be-
$ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\left[ {\dfrac{{4rd}}{{{{({r^2})}^2}}}} \right] = \dfrac{q}{{4\pi { \in _ \circ }}}.\dfrac{{4rd}}{{{r^4}}} = \dfrac{q}{{4\pi { \in _ \circ }}}.\dfrac{{4d}}{{{r^3}}} $
along BP
Also, electric dipole moment $ p = q \times 2d $ , so the expression will now become-
$ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\dfrac{{2(2d)}}{{{r^3}}} = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{{2p}}{{{r^3}}} $
E acts in the direction of the dipole moment.
Therefore, the expression for the electric field intensity due to an electric dipole at a point on its axial line is $ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\dfrac{{2(2d)}}{{{r^3}}} = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{{2p}}{{{r^3}}} $
Whenever it is required to derive an expression, then always first draw a rough sketch depicting a dipole and a point on the axial line. As mentioned in the figure, first we found out the electric field at the point P due to + q charge placed at B and then due to charge – q placed at A. Then, the resultant electric field at P is found out. After making necessary assumptions, we got the expression for electric field intensity.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

What is the chemical name of rust Write its formul class 12 chemistry CBSE
