
Diagonals of a rhombus are 12cm and 16cm respectively, then find the side of the rhombus and its perimeter.
Answer
552.9k+ views
Hint: Rhombus is a two dimensional shape with four equal sides and four angles which can or cannot be $90{}^\circ $, but opposite angles are always same, and both diagonals of a rhombus are perpendicular and bisect each other.
Complete step by step answer:
According to given data,
Shape ABCD is a rhombus and O is the intersecting point of both diagonals which is bisecting both diagonals, and both diagonals are perpendicular to each other according to definition.
$\begin{align}
& \Rightarrow AO=\dfrac{16}{2}cm=8cm \\
& \Rightarrow BO=\dfrac{12}{2}cm=6cm \\
\end{align}$
So, $\Delta AOB$ is a right triangle, and using Pythagoras Theorem we can find the length of AB which is a side of rhombus.
According to Pythagoras Theorem,
\[\begin{align}
& A{{B}^{2}}=B{{O}^{2}}+A{{O}^{2}} \\
& AB=\sqrt{{{6}^{2}}+{{8}^{2}}}cm \\
& AB=\sqrt{36+64}=\sqrt{100}=10cm \\
\end{align}\]
And we know the perimeter of the rhombus is equal to 4a where ‘a’ is the length of a side.
So, Perimeter of rhombus $=4a$
$\begin{align}
& =4\times 10cm \\
& =40cm \\
\end{align}$
Hence, the side is 10cm and the perimeter is 40cm.
Note: Here we should have appropriate knowledge of general shapes, some time lack of knowledge can confuse us in easy problems. By the way here we can use direct formula to find out the length of side which is $4A{{B}^{2}}=A{{C}^{2}}+B{{D}^{2}}$.
Complete step by step answer:
According to given data,

Shape ABCD is a rhombus and O is the intersecting point of both diagonals which is bisecting both diagonals, and both diagonals are perpendicular to each other according to definition.
$\begin{align}
& \Rightarrow AO=\dfrac{16}{2}cm=8cm \\
& \Rightarrow BO=\dfrac{12}{2}cm=6cm \\
\end{align}$
So, $\Delta AOB$ is a right triangle, and using Pythagoras Theorem we can find the length of AB which is a side of rhombus.
According to Pythagoras Theorem,
\[\begin{align}
& A{{B}^{2}}=B{{O}^{2}}+A{{O}^{2}} \\
& AB=\sqrt{{{6}^{2}}+{{8}^{2}}}cm \\
& AB=\sqrt{36+64}=\sqrt{100}=10cm \\
\end{align}\]
And we know the perimeter of the rhombus is equal to 4a where ‘a’ is the length of a side.
So, Perimeter of rhombus $=4a$
$\begin{align}
& =4\times 10cm \\
& =40cm \\
\end{align}$
Hence, the side is 10cm and the perimeter is 40cm.
Note: Here we should have appropriate knowledge of general shapes, some time lack of knowledge can confuse us in easy problems. By the way here we can use direct formula to find out the length of side which is $4A{{B}^{2}}=A{{C}^{2}}+B{{D}^{2}}$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

When and how did Canada eventually gain its independence class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

Which planet is known as the Watery Planet AJupiter class 10 social science CBSE
