
Express $1.3\overline{2}+0.\overline{35}$ as a fraction in the simplest form.
Answer
507k+ views
Hint:
A fraction can be defined as a part of a whole. A fraction consists of two parts: numerator and denominator. The simplest form of a fraction is the state when numerator and denominator cannot be divided any further, while still being whole numbers.
Complete step by step solution:
Let $x=1.3\overline{2}=1.322222.......\text{ }.....\left( 1 \right)$
Now, multiplying equation (1) by $10$
$\Rightarrow 10x=13.22222.......\text{ }.....\text{(2)}$
Now again, multiplying equation (2) by
$\Rightarrow 10\times 10x=132.22222........\text{ }.....\left( 3 \right)$
Here, subtracting equation (2) from (3)
$\begin{align}
& \Rightarrow 100x-10x=132.22222-13.22222 \\
& \Rightarrow 90x=119 \\
& \therefore x=\dfrac{119}{90} \\
\end{align}$
Now again, let $y=0.\overline{35}=0.353535........\text{ }.....\left( 4 \right)$
Here, multiplying equation (4) by $100$
$\Rightarrow 100y=35.353535........\text{ }.....\left( 5 \right)$
Subtracting equation (4) from equation (5)
$\begin{align}
& \Rightarrow 100y-y=35.353535-0.353535 \\
& \Rightarrow 99y=35 \\
& \therefore y=\dfrac{35}{99} \\
\end{align}$
We know that,
$\Rightarrow 1.3\overline{2}+0.\overline{35}=x+y$
Hence,
$\begin{align}
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119}{90}+\dfrac{35}{99} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119\times 11+35\times 10}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1309+350}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1659}{990} \\
& \therefore1.3\overline{2}+0.\overline{35}=\dfrac{553}{330} \\
\end{align}$
Hence, the value is $\dfrac{553}{330}$.
Note:
Always keep in mind that the digits needed to be multiplied by $10$ till all the required digits are on the left side. You only want one “set” of repeating digits on the left side of the decimal. For example, in this question the first digit has $2$ as the repeating digit, thus you only want one $2$ on the left of the decimal. In the second number repeating digits are $35$, thus you’d only want one set of $35$ on the left side.
A fraction can be defined as a part of a whole. A fraction consists of two parts: numerator and denominator. The simplest form of a fraction is the state when numerator and denominator cannot be divided any further, while still being whole numbers.
Complete step by step solution:
Let $x=1.3\overline{2}=1.322222.......\text{ }.....\left( 1 \right)$
Now, multiplying equation (1) by $10$
$\Rightarrow 10x=13.22222.......\text{ }.....\text{(2)}$
Now again, multiplying equation (2) by
$\Rightarrow 10\times 10x=132.22222........\text{ }.....\left( 3 \right)$
Here, subtracting equation (2) from (3)
$\begin{align}
& \Rightarrow 100x-10x=132.22222-13.22222 \\
& \Rightarrow 90x=119 \\
& \therefore x=\dfrac{119}{90} \\
\end{align}$
Now again, let $y=0.\overline{35}=0.353535........\text{ }.....\left( 4 \right)$
Here, multiplying equation (4) by $100$
$\Rightarrow 100y=35.353535........\text{ }.....\left( 5 \right)$
Subtracting equation (4) from equation (5)
$\begin{align}
& \Rightarrow 100y-y=35.353535-0.353535 \\
& \Rightarrow 99y=35 \\
& \therefore y=\dfrac{35}{99} \\
\end{align}$
We know that,
$\Rightarrow 1.3\overline{2}+0.\overline{35}=x+y$
Hence,
$\begin{align}
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119}{90}+\dfrac{35}{99} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119\times 11+35\times 10}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1309+350}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1659}{990} \\
& \therefore1.3\overline{2}+0.\overline{35}=\dfrac{553}{330} \\
\end{align}$
Hence, the value is $\dfrac{553}{330}$.
Note:
Always keep in mind that the digits needed to be multiplied by $10$ till all the required digits are on the left side. You only want one “set” of repeating digits on the left side of the decimal. For example, in this question the first digit has $2$ as the repeating digit, thus you only want one $2$ on the left of the decimal. In the second number repeating digits are $35$, thus you’d only want one set of $35$ on the left side.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

How many crores make 10 million class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

The southernmost point of the Indian mainland is known class 7 social studies CBSE
