
Fill up the blank with suitable
Acceleration due to gravity independent of ________
Answer
547.5k+ views
- Hint – Here we will proceed by using the concept of Newton’s second law of motion that is $F = m \times a$ (force $ = $ mass $ \times $acceleration). Acceleration $ = \dfrac{{Force}}{{Mass}}$.
Complete step-by-step solution -
Acceleration due to gravity is independent of mass. These two quantities are independent of each other. Light objects accelerate more slowly than heavy objects when forces other than gravity are also at work. In this case the object is falling but is not considered as a free fall.
A body of mass m falling under the influence of gravity has a force given as –
$F = \dfrac{{GMm}}{{{R^2}}}$
Here, G is gravitational constant
M- mass of 1st body
m-mass of 2nd body
R- distance between two bodies.
Here, M is the mass of Earth and R is the radius of Earth.
Also this force is the weight of the body which is given as
$F = mg$ $ \to $ weight
Thus, we get
$\dfrac{{GMm}}{{{R^2}}} = mg$
$g = \dfrac{{GM}}{{{R^2}}}$
All these are constants and do not change.
So we can say that
Value of g remains constant. G is a universal constant.
It does not depend upon the mass of the body falling.
Note – Whenever we come up with this type of question, one must know that acceleration due to gravity does not depend upon the mass of the object. Then we write the formula of force and calculate the acceleration due to gravity. (Here by using the formula we calculate acceleration due to gravity is independent of mass).
Complete step-by-step solution -
Acceleration due to gravity is independent of mass. These two quantities are independent of each other. Light objects accelerate more slowly than heavy objects when forces other than gravity are also at work. In this case the object is falling but is not considered as a free fall.
A body of mass m falling under the influence of gravity has a force given as –
$F = \dfrac{{GMm}}{{{R^2}}}$
Here, G is gravitational constant
M- mass of 1st body
m-mass of 2nd body
R- distance between two bodies.
Here, M is the mass of Earth and R is the radius of Earth.
Also this force is the weight of the body which is given as
$F = mg$ $ \to $ weight
Thus, we get
$\dfrac{{GMm}}{{{R^2}}} = mg$
$g = \dfrac{{GM}}{{{R^2}}}$
All these are constants and do not change.
So we can say that
Value of g remains constant. G is a universal constant.
It does not depend upon the mass of the body falling.
Note – Whenever we come up with this type of question, one must know that acceleration due to gravity does not depend upon the mass of the object. Then we write the formula of force and calculate the acceleration due to gravity. (Here by using the formula we calculate acceleration due to gravity is independent of mass).
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
