
Find the equation of the plane passing through the following points: (2,3,4), (−3,5,1) and (4,−1,2).
Answer
552.9k+ views
Hint: In this question, we use the concept of the equation of Plane. Equation of plane passing through three non collinear points $\left( {{x_1},{y_1},{z_1}} \right),\left( {{x_2},{y_2},{z_2}} \right),\left( {{x_3},{y_3},{z_3}} \right)$ is
\[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}}
\end{array}} \right| = 0\]
Complete step-by-step answer:
Given, we have three points (2,3,4), (−3,5,1) and (4,−1,2).
When we have three non collinear points so the equation plane passing through three non collinear points is \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}}
\end{array}} \right| = 0\]
Now, $\left( {{x_1},{y_1},{z_1}} \right) = \left( {2,3,4} \right)$ , $\left( {{x_2},{y_2},{z_2}} \right) = \left( { - 3,5,1} \right)$ and $\left( {{x_3},{y_3},{z_3}} \right) = \left( {4, - 1,2} \right)$ .
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 3 - 2}&{5 - 3}&{1 - 4} \\
{4 - 2}&{ - 1 - 3}&{2 - 4}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 5}&2&{ - 3} \\
2&{ - 4}&{ - 2}
\end{array}} \right| = 0 \\
\]
Now solve the determinant,
$
\Rightarrow \left( {x - 2} \right)\left( { - 4 - 12} \right) - \left( {y - 3} \right)\left( {10 + 6} \right) + \left( {z - 4} \right)\left( {20 - 4} \right) = 0 \\
\Rightarrow \left( {x - 2} \right)\left( { - 16} \right) - \left( {y - 3} \right)\left( {16} \right) + \left( {z - 4} \right)\left( {16} \right) = 0 \\
$
Divide by 16 in above equation,
$
\Rightarrow \left( {x - 2} \right)\left( { - 1} \right) - \left( {y - 3} \right) + \left( {z - 4} \right) = 0 \\
\Rightarrow - x + 2 - y + 3 + z - 4 = 0 \\
\Rightarrow - x - y + z + 1 = 0 \\
\Rightarrow x + y - z - 1 = 0 \\
\Rightarrow x + y - z = 1 \\
$
So, the equation of the plane passing through the points (2,3,4), (−3,5,1) and (4,−1,2) is $x + y - z = 1$.
Note: Whenever we face such types of problems we can use two methods, one method we already mention above and in second method we can find vector equation of plane passing through three points with position vector $\mathop a\limits^ \to ,\mathop b\limits^ \to ,\mathop c\limits^ \to $ is $\left( {\mathop r\limits^ \to - \mathop a\limits^ \to } \right).\left[ {\left( {\mathop b\limits^ \to - \mathop a\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop a\limits^ \to } \right)} \right] = 0$ then put $\mathop r\limits^ \to = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge $ . So, we will get the required answer.
\[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}}
\end{array}} \right| = 0\]
Complete step-by-step answer:
Given, we have three points (2,3,4), (−3,5,1) and (4,−1,2).
When we have three non collinear points so the equation plane passing through three non collinear points is \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}}
\end{array}} \right| = 0\]
Now, $\left( {{x_1},{y_1},{z_1}} \right) = \left( {2,3,4} \right)$ , $\left( {{x_2},{y_2},{z_2}} \right) = \left( { - 3,5,1} \right)$ and $\left( {{x_3},{y_3},{z_3}} \right) = \left( {4, - 1,2} \right)$ .
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 3 - 2}&{5 - 3}&{1 - 4} \\
{4 - 2}&{ - 1 - 3}&{2 - 4}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 5}&2&{ - 3} \\
2&{ - 4}&{ - 2}
\end{array}} \right| = 0 \\
\]
Now solve the determinant,
$
\Rightarrow \left( {x - 2} \right)\left( { - 4 - 12} \right) - \left( {y - 3} \right)\left( {10 + 6} \right) + \left( {z - 4} \right)\left( {20 - 4} \right) = 0 \\
\Rightarrow \left( {x - 2} \right)\left( { - 16} \right) - \left( {y - 3} \right)\left( {16} \right) + \left( {z - 4} \right)\left( {16} \right) = 0 \\
$
Divide by 16 in above equation,
$
\Rightarrow \left( {x - 2} \right)\left( { - 1} \right) - \left( {y - 3} \right) + \left( {z - 4} \right) = 0 \\
\Rightarrow - x + 2 - y + 3 + z - 4 = 0 \\
\Rightarrow - x - y + z + 1 = 0 \\
\Rightarrow x + y - z - 1 = 0 \\
\Rightarrow x + y - z = 1 \\
$
So, the equation of the plane passing through the points (2,3,4), (−3,5,1) and (4,−1,2) is $x + y - z = 1$.
Note: Whenever we face such types of problems we can use two methods, one method we already mention above and in second method we can find vector equation of plane passing through three points with position vector $\mathop a\limits^ \to ,\mathop b\limits^ \to ,\mathop c\limits^ \to $ is $\left( {\mathop r\limits^ \to - \mathop a\limits^ \to } \right).\left[ {\left( {\mathop b\limits^ \to - \mathop a\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop a\limits^ \to } \right)} \right] = 0$ then put $\mathop r\limits^ \to = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge $ . So, we will get the required answer.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
