
Find the percentage increase in the area of a triangle if its each side is doubled.
(A). 50%
(B). 100%
(C). 300%
(D). 150%
Answer
545.4k+ views
Hint: In the above question we will have to know about the semi-perimeter of the triangle which is half its perimeter. Also, we will use the Heron’s formula to calculate the area of a triangle. The formulae that we will use are as below:
$\begin{align}
& s=\text{semi-perimeter}=\dfrac{a+b+c}{2} \\
& A=\text{area=}\sqrt{s(s-a)(s-b)(s-c)} \\
\end{align}$
Complete step-by-step solution -
Here a, b ,c are the sides of a triangle, s is semi- semi-perimeter and A is the area of a triangle.
Let us consider the sides of the triangle are x, y, z.
\[\begin{align}
& s=\dfrac{x+y+z}{2} \\
& A=\sqrt{s(s-x)(s-y)(s-z)} \\
\end{align}\]
When each side is doubled, the new sides are 2x, 2y , 2z.
\[\begin{align}
& \text{Hence, new s }\!\!'\!\!\text{ =}\dfrac{2x+2y+2z}{2}=2\left( \dfrac{x+y+z}{2} \right)=2s \\
& \text{New area A }\!\!'\!\!\text{ =}\sqrt{2s(2s-2x)(2s-2y)(2s-2z)} \\
& \sqrt{2\times 2\times 2\times 2\times s(s-x)(s-y)(s-z)} \\
& 4\sqrt{s(s-x)(s-y)(s-z)}=4A \\
\end{align}\]
\[\begin{align}
& \therefore \%\text{ change in area =}\dfrac{A'-A}{A}\times 100 \\
& =\dfrac{4\sqrt{s(s-x)(s-y)(s-z)}-\sqrt{s(s-x)(s-y)(s-z)}}{\sqrt{s(s-x)(s-y)(s-z)}}\times 100 \\
& =\dfrac{4-1}{1}\times 100 \\
& =300\% \\
\end{align}\]
Therefore, the correct option of the above question is option C.
Note: Remember Heron's formula to calculate the area of a triangle when the sides of a triangle are given in the question. Unlike other area formulae of a triangle, there is no need to calculate angles or other distances in the triangle first. Also it can be applied to any shape of triangle, as long as we know its three side lengths.
Also remember the formula of the semi-perimeter of a triangle.
Be careful while doing calculation as there is a chance that you might make a mistake and you will get the incorrect answer.
$\begin{align}
& s=\text{semi-perimeter}=\dfrac{a+b+c}{2} \\
& A=\text{area=}\sqrt{s(s-a)(s-b)(s-c)} \\
\end{align}$
Complete step-by-step solution -
Here a, b ,c are the sides of a triangle, s is semi- semi-perimeter and A is the area of a triangle.
Let us consider the sides of the triangle are x, y, z.
\[\begin{align}
& s=\dfrac{x+y+z}{2} \\
& A=\sqrt{s(s-x)(s-y)(s-z)} \\
\end{align}\]
When each side is doubled, the new sides are 2x, 2y , 2z.
\[\begin{align}
& \text{Hence, new s }\!\!'\!\!\text{ =}\dfrac{2x+2y+2z}{2}=2\left( \dfrac{x+y+z}{2} \right)=2s \\
& \text{New area A }\!\!'\!\!\text{ =}\sqrt{2s(2s-2x)(2s-2y)(2s-2z)} \\
& \sqrt{2\times 2\times 2\times 2\times s(s-x)(s-y)(s-z)} \\
& 4\sqrt{s(s-x)(s-y)(s-z)}=4A \\
\end{align}\]
\[\begin{align}
& \therefore \%\text{ change in area =}\dfrac{A'-A}{A}\times 100 \\
& =\dfrac{4\sqrt{s(s-x)(s-y)(s-z)}-\sqrt{s(s-x)(s-y)(s-z)}}{\sqrt{s(s-x)(s-y)(s-z)}}\times 100 \\
& =\dfrac{4-1}{1}\times 100 \\
& =300\% \\
\end{align}\]
Therefore, the correct option of the above question is option C.
Note: Remember Heron's formula to calculate the area of a triangle when the sides of a triangle are given in the question. Unlike other area formulae of a triangle, there is no need to calculate angles or other distances in the triangle first. Also it can be applied to any shape of triangle, as long as we know its three side lengths.
Also remember the formula of the semi-perimeter of a triangle.
Be careful while doing calculation as there is a chance that you might make a mistake and you will get the incorrect answer.
Recently Updated Pages
Physics and Measurement Mock Test 2025 – Practice Questions & Answers

NCERT Solutions For Class 5 English Marigold - The Little Bully

NCERT Solutions For Class 12 Maths Three Dimensional Geometry Exercise 11.1

NCERT Solutions For Class 11 English Woven Words (Poem) - Ajamil And The Tigers

NCERT Solutions For Class 6 Hindi Durva - Bhaaloo

NCERT Solutions For Class 12 Physics In Hindi - Wave Optics

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

When the President submits his resignation to the VicePresident class 10 social science CBSE

Five things I will do to build a great India class 10 english CBSE

10 examples of evaporation in daily life with explanations
