
How do you find the sum of the infinite series $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}} $ ?
Answer
475.2k+ views
Hint: We first get the terms using the general terms of the series. Then we find the first term $ {{t}_{1}} $ and common ratio $ r $ . We use the formula of sum of infinite G.P. to find the final solution for $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}} $.
Complete step by step solution:
The given series $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}} $ is an infinite G.P. series. We can write it as $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}}=6\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}} $ .
We express the geometric sequence in its general form.
We express the terms as $ {{t}_{n}} $ , the $ {{n}^{th}} $ term of the series $ \sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}} $ .
Now we place consecutive natural numbers for $ i $ as $ 1,2,3,4,... $ to get the sequence as
\[{{\left( \dfrac{1}{10} \right)}^{1}},{{\left( \dfrac{1}{10} \right)}^{2}},{{\left( \dfrac{1}{10} \right)}^{3}},{{\left( \dfrac{1}{10} \right)}^{4}},......\]. The first term be $ {{t}_{1}} $ and the common ratio be $ r $ where $ r=\dfrac{{{t}_{2}}}{{{t}_{1}}}=\dfrac{{{t}_{3}}}{{{t}_{2}}}=\dfrac{{{t}_{4}}}{{{t}_{3}}} $ . Here $ {{t}_{1}}=\left( \dfrac{1}{10} \right) $ and $ r=\left( \dfrac{1}{10} \right)<1 $ .
We can express the general term $ {{t}_{n}} $ based on the first term and the common ratio.
The formula being $ {{t}_{n}}={{t}_{1}}{{r}^{n-1}} $ .
If we assume the sum of the infinite G.P as $ {{S}_{\infty }} $ then for the value of $ \left| r \right|<1 $ , the sum of the infinite terms of the G.P. is $ {{S}_{\infty }}=\dfrac{{{t}_{1}}}{1-r} $ .
Putting the values, we get \[{{S}_{\infty }}=\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}}=\dfrac{\dfrac{1}{10}}{1-\dfrac{1}{10}}=\dfrac{1}{10}\times \dfrac{10}{9}=\dfrac{1}{9}\].
The final solution is $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}}=6\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}}=\dfrac{6}{9}=\dfrac{2}{3} $ .
So, the correct answer is “$\dfrac{2}{3} $”.
Note: The sequence is a decreasing sequence where the common ratio is a value of less than 1. The common difference will never be calculated according to the difference of greater number from the lesser number. The ratio formula should always be according $ r=\dfrac{{{t}_{2}}}{{{t}_{1}}}=\dfrac{{{t}_{3}}}{{{t}_{2}}}=\dfrac{{{t}_{4}}}{{{t}_{3}}} $ .
Complete step by step solution:
The given series $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}} $ is an infinite G.P. series. We can write it as $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}}=6\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}} $ .
We express the geometric sequence in its general form.
We express the terms as $ {{t}_{n}} $ , the $ {{n}^{th}} $ term of the series $ \sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}} $ .
Now we place consecutive natural numbers for $ i $ as $ 1,2,3,4,... $ to get the sequence as
\[{{\left( \dfrac{1}{10} \right)}^{1}},{{\left( \dfrac{1}{10} \right)}^{2}},{{\left( \dfrac{1}{10} \right)}^{3}},{{\left( \dfrac{1}{10} \right)}^{4}},......\]. The first term be $ {{t}_{1}} $ and the common ratio be $ r $ where $ r=\dfrac{{{t}_{2}}}{{{t}_{1}}}=\dfrac{{{t}_{3}}}{{{t}_{2}}}=\dfrac{{{t}_{4}}}{{{t}_{3}}} $ . Here $ {{t}_{1}}=\left( \dfrac{1}{10} \right) $ and $ r=\left( \dfrac{1}{10} \right)<1 $ .
We can express the general term $ {{t}_{n}} $ based on the first term and the common ratio.
The formula being $ {{t}_{n}}={{t}_{1}}{{r}^{n-1}} $ .
If we assume the sum of the infinite G.P as $ {{S}_{\infty }} $ then for the value of $ \left| r \right|<1 $ , the sum of the infinite terms of the G.P. is $ {{S}_{\infty }}=\dfrac{{{t}_{1}}}{1-r} $ .
Putting the values, we get \[{{S}_{\infty }}=\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}}=\dfrac{\dfrac{1}{10}}{1-\dfrac{1}{10}}=\dfrac{1}{10}\times \dfrac{10}{9}=\dfrac{1}{9}\].
The final solution is $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}}=6\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}}=\dfrac{6}{9}=\dfrac{2}{3} $ .
So, the correct answer is “$\dfrac{2}{3} $”.
Note: The sequence is a decreasing sequence where the common ratio is a value of less than 1. The common difference will never be calculated according to the difference of greater number from the lesser number. The ratio formula should always be according $ r=\dfrac{{{t}_{2}}}{{{t}_{1}}}=\dfrac{{{t}_{3}}}{{{t}_{2}}}=\dfrac{{{t}_{4}}}{{{t}_{3}}} $ .
Recently Updated Pages
Ncert Books Class 10 Science Chapter 2 Free Download

Ncert Books Class 11 Biology Chapter 16 Free Download

Ncert Books Class 11 Biology Chapter 12 Free Download

Ncert Books Class 11 Biology Chapter 10 Free Download

Ncert Books Class 11 Chemistry Chapter 7 Free Download

Ncert Books Class 11 Physics Chapter 8 Free Download

Trending doubts
Difference Between Plant Cell and Animal Cell

Name 10 Living and Non living things class 9 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is the Full Form of ISI and RAW

Write the 6 fundamental rights of India and explain in detail
