
Find the value of a and b such that$\int{\dfrac{dx}{1\ +\ \sin x}}\ =\ \tan (x+\ a)\ +\ b$.
Answer
561k+ views
Hint: $\dfrac{1}{1+\sin x}$cannot be integrated directly so convert the function such that we can integrate it. Rationalize the given function $\dfrac{1}{1+\sin x}$ before integrating it.
Consider the expression,
$\int{\dfrac{dx}{1\ +\ \sin x}}\ =\tan (x+a)+b$…(1.1)
Now,
$\int{\dfrac{dx}{1\ +\ \sin x}}=\tan (x+a)+b$
Multiply $(1-\sin x)$ with both numerator and denominator in L.H.S., we get
$\int{\dfrac{dx}{1\ +\ \sin x}}\times \dfrac{(1\ -\ \sin x)}{(1\ -\ \sin x)}=\tan (x+a)+b$
We know ${{a}^{2\ }}-\ {{b}^{2}}=\ (a\ +\ b)(a\ -\ b)$ so in denominator, we use this formula and we
get
$\int{\dfrac{(1\ -\ \sin x\ )dx}{{{1}^{2}}\ -{{\sin }^{2}}x}}=\tan (x+a)+b$
We know${{1}^{2}}\ -{{\sin }^{2}}x={{\cos }^{2}}x\ $, so the above equation becomes
$\int{\dfrac{(1\ -\ \sin x\ )dx}{{{\cos }^{2}}x\ }}=\tan (x+a)+b$
Separating the denominator, we get
\[\int (\dfrac{1}{{{\cos }^{2}}x}\ -\ \dfrac{\sin x}{{{\cos }^{2}}x}\ )dx=\tan (x+a)+b\]
We know that $\dfrac{1}{{{\cos }^{2}}x}\ =\ {{\sec }^{2}}x$ , $\dfrac{\sin x}{\cos x}\ =\ \tan x$ and
$\dfrac{\ 1}{\cos x}\ =\ \sec x$, so the above equation becomes
$\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\dfrac{\sin x}{\cos x}\times \dfrac{1}{\cos x}\ dx}}=\tan (x+a)+b$
$\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\tan x\ \sec xdx}}=\tan (x+a)+b$
We know, $\int{{{\sec }^{2}}x\ dx\ =\ \tan x\ }$and$\int{\tan x\ \sec xdx\ =\ \sec x}$, so above
equation becomes
$\Rightarrow \tan x-\sec x+C=\tan (x+a)+b$
Hence, comparing both side we get the value of a & b, so
\[a=0\]; \[b=-\sec x+C\]
Note: In expression$\int{\dfrac{dx}{1\ +\ \sin x}}\ \ $, it’s important to rationalize so that we can get a function after integration which resembles the R.H.S. Without rationalizing, solving the expression becomes complicated and time consuming.
Consider the expression,
$\int{\dfrac{dx}{1\ +\ \sin x}}\ =\tan (x+a)+b$…(1.1)
Now,
$\int{\dfrac{dx}{1\ +\ \sin x}}=\tan (x+a)+b$
Multiply $(1-\sin x)$ with both numerator and denominator in L.H.S., we get
$\int{\dfrac{dx}{1\ +\ \sin x}}\times \dfrac{(1\ -\ \sin x)}{(1\ -\ \sin x)}=\tan (x+a)+b$
We know ${{a}^{2\ }}-\ {{b}^{2}}=\ (a\ +\ b)(a\ -\ b)$ so in denominator, we use this formula and we
get
$\int{\dfrac{(1\ -\ \sin x\ )dx}{{{1}^{2}}\ -{{\sin }^{2}}x}}=\tan (x+a)+b$
We know${{1}^{2}}\ -{{\sin }^{2}}x={{\cos }^{2}}x\ $, so the above equation becomes
$\int{\dfrac{(1\ -\ \sin x\ )dx}{{{\cos }^{2}}x\ }}=\tan (x+a)+b$
Separating the denominator, we get
\[\int (\dfrac{1}{{{\cos }^{2}}x}\ -\ \dfrac{\sin x}{{{\cos }^{2}}x}\ )dx=\tan (x+a)+b\]
We know that $\dfrac{1}{{{\cos }^{2}}x}\ =\ {{\sec }^{2}}x$ , $\dfrac{\sin x}{\cos x}\ =\ \tan x$ and
$\dfrac{\ 1}{\cos x}\ =\ \sec x$, so the above equation becomes
$\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\dfrac{\sin x}{\cos x}\times \dfrac{1}{\cos x}\ dx}}=\tan (x+a)+b$
$\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\tan x\ \sec xdx}}=\tan (x+a)+b$
We know, $\int{{{\sec }^{2}}x\ dx\ =\ \tan x\ }$and$\int{\tan x\ \sec xdx\ =\ \sec x}$, so above
equation becomes
$\Rightarrow \tan x-\sec x+C=\tan (x+a)+b$
Hence, comparing both side we get the value of a & b, so
\[a=0\]; \[b=-\sec x+C\]
Note: In expression$\int{\dfrac{dx}{1\ +\ \sin x}}\ \ $, it’s important to rationalize so that we can get a function after integration which resembles the R.H.S. Without rationalizing, solving the expression becomes complicated and time consuming.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
