
How many grams of concentrated nitric acid solution should be used to prepare 250mL of 2 M \[HNO_3\] ? The concentrated acid is 70 % (w/w) \[HNO_3\].
A. 90.0g conc. \[HNO_3\]
B. 70.0g conc. \[HNO_3\]
C. 54.0g conc. \[HNO_3\]
D. 45.0g conc. \[HNO_3\]
Answer
458.7k+ views
Hint: Molarity is the number of moles of solute per liter of solution. That means if we can calculate the amount of solute in 1000mL of solution, we can begin to proceed towards our answer.
Complete step by step solution:
We know,
2M \[HNO_3\] means 2 moles of \[HNO_3\] in 1000mL of solution.
Therefore, in 250mL solution we have \[\dfrac{2}{1000}\times \,250\,=\,0.5\,moles\]
Molecular weight of \[HNO_3\] = (1x1) + (1x14) + (3x16) = 63 grams.
We now calculate the weight of \[HNO_3\] in 250 mL of solution.
We know,
\[weight\,of\,solute\,=\,no.\,of\,moles\,of\,solute\,\,\times \,molecular\,mass\]
Substituting the values in this equation we get,
Weight of \[HNO_3\] = 0.5 x 63g
70% weight by weight means 70g \[HNO_3\]
is present in 100g of solution.
Therefore, according to our calculation,
The mass of \[HNO_3\] required is \[\dfrac{100}{70}\times 0.5\times 63\,=\,45\,grams\]
Hence, Option (D) 45.0g of conc. \[HNO_3\] is the correct answer.
Note: Instead of calculating the moles of solute and liters of solution present individually, we can also string all the calculations together in one problem.
To calculate the molarity of a solution, it is essential to remember the number of moles of solute must be divided by the total liters of solution produced. If the amount of solute is given in grams, we must first calculate the number of moles of solute using the solute’s molar mass, then calculate the molarity using the number of moles and total volume.
Complete step by step solution:
We know,
2M \[HNO_3\] means 2 moles of \[HNO_3\] in 1000mL of solution.
Therefore, in 250mL solution we have \[\dfrac{2}{1000}\times \,250\,=\,0.5\,moles\]
Molecular weight of \[HNO_3\] = (1x1) + (1x14) + (3x16) = 63 grams.
We now calculate the weight of \[HNO_3\] in 250 mL of solution.
We know,
\[weight\,of\,solute\,=\,no.\,of\,moles\,of\,solute\,\,\times \,molecular\,mass\]
Substituting the values in this equation we get,
Weight of \[HNO_3\] = 0.5 x 63g
70% weight by weight means 70g \[HNO_3\]
is present in 100g of solution.
Therefore, according to our calculation,
The mass of \[HNO_3\] required is \[\dfrac{100}{70}\times 0.5\times 63\,=\,45\,grams\]
Hence, Option (D) 45.0g of conc. \[HNO_3\] is the correct answer.
Note: Instead of calculating the moles of solute and liters of solution present individually, we can also string all the calculations together in one problem.
To calculate the molarity of a solution, it is essential to remember the number of moles of solute must be divided by the total liters of solution produced. If the amount of solute is given in grams, we must first calculate the number of moles of solute using the solute’s molar mass, then calculate the molarity using the number of moles and total volume.
Recently Updated Pages
Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Molarity vs Molality: Definitions, Formulas & Key Differences

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Instantaneous Velocity - Formula based Examples for JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
