
If 5.85 g of NaCl (molecular weight = 58.5) is dissolved in water and the solution is made up to 0.5 litre, the molarity of the solution will be:
(a) 0.2
(b) 0.4
(c) 1.0
(d) 0.1
Answer
169.2k+ views
Hint: Firstly, calculate the number of moles by dividing weight of the compound by its molecular weight. Then, use this to calculate the molarity of the solution in moles per litre volume.
Complete step by step answer:
Molarity, often represented by ‘M’, is a term used to express concentration in terms of moles per litre of a solution.
Therefore, we define it as - “Molarity of any solution is number of moles of solute per litre of solution”. It has the following formula –
\[\text{Molarity=}\dfrac{\text{moles of solute (mol)}}{\text{volume of solution (L)}}\]
From the above formula, we can see that the SI unit of Molarity is mol/L.
According to the question,
weight of NaCl = 5.85 g
molecular weight of NaCl= 58.5
From this, we can calculate the number of moles of NaCl
= \[\dfrac{\text{weight of NaCl}}{\text{molecular weight of NaCl}}\]
= \[\dfrac{5.85}{58.5}\] = 0.1 moles
Now, let us calculate the Molarity of solution –
Molarity = \[\dfrac{\text{moles of solute (mol)}}{\text{volume of solution (L)}}=\dfrac{0.1}{0.5}\]mol/L = 0.2 mol/L
Therefore, the answer is – option (a) – the molarity of the solution is 0.2 mol/L.
Additional Information:
The ‘Concentration’ of a solution is defined as the relative amount of solute present in a solution.
Note: People often confuse between Molarity and Molality. Molality is represented by ‘m’, whereas molarity is represented by ‘M’. Molality of any solution can be defined as the number of moles of solute present per kg of solvent. It can be represented by the following –
\[\text{Molality=}\dfrac{\text{moles of solute (mol)}}{\text{weight of solvent (kg)}}\]
Its SI unit is mol/kg.
Complete step by step answer:
Molarity, often represented by ‘M’, is a term used to express concentration in terms of moles per litre of a solution.
Therefore, we define it as - “Molarity of any solution is number of moles of solute per litre of solution”. It has the following formula –
\[\text{Molarity=}\dfrac{\text{moles of solute (mol)}}{\text{volume of solution (L)}}\]
From the above formula, we can see that the SI unit of Molarity is mol/L.
According to the question,
weight of NaCl = 5.85 g
molecular weight of NaCl= 58.5
From this, we can calculate the number of moles of NaCl
= \[\dfrac{\text{weight of NaCl}}{\text{molecular weight of NaCl}}\]
= \[\dfrac{5.85}{58.5}\] = 0.1 moles
Now, let us calculate the Molarity of solution –
Molarity = \[\dfrac{\text{moles of solute (mol)}}{\text{volume of solution (L)}}=\dfrac{0.1}{0.5}\]mol/L = 0.2 mol/L
Therefore, the answer is – option (a) – the molarity of the solution is 0.2 mol/L.
Additional Information:
The ‘Concentration’ of a solution is defined as the relative amount of solute present in a solution.
Note: People often confuse between Molarity and Molality. Molality is represented by ‘m’, whereas molarity is represented by ‘M’. Molality of any solution can be defined as the number of moles of solute present per kg of solvent. It can be represented by the following –
\[\text{Molality=}\dfrac{\text{moles of solute (mol)}}{\text{weight of solvent (kg)}}\]
Its SI unit is mol/kg.
Recently Updated Pages
Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Molarity vs Molality: Definitions, Formulas & Key Differences

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Instantaneous Velocity - Formula based Examples for JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
