
If $A + B + C = \pi ,$then $\left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = .......................$
Answer
560.1k+ views
Hint: $\sin \pi = 0$, $\cos (\pi - x) = - \cos x$
Using the properties of trigonometry first, we make the determinant simple and then further solve it.
Also given
$A + B + C = \pi$
Applying trigonometric properties, we get
$
\sin (A + B + C) = \sin \pi = 0 \\
\cos (A + B) = \cos (\pi - C) = - \cos C \\
$
Putting these values in the determinant, we get
$
\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
0&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{ - \cos C}&{ - \tan A}&0
\end{array}} \right| \\
\\
$
Now expanding the determinant through row${R_1}$,we get
$\begin{gathered}
\Delta = 0\left| {\begin{array}{*{20}{c}}
0&{\tan A} \\
{ - \tan A}&0
\end{array}} \right| + ( - \sin B)\left| {\begin{array}{*{20}{c}}
{\sin B}&{\tan A} \\
{ - \cos C}&0
\end{array}} \right| + \cos C\left| {\begin{array}{*{20}{c}}
{\sin B}&0 \\
{ - \cos C}&{ - \tan A}
\end{array}} \right| \\
\Delta = - \sin B(0 - (\tan A)( - \cos C)) + \cos C((\sin B)( - \tan A) - 0) \\
\Delta = \sin B\tan A\cos C - \sin B\tan A\cos C \\
\Delta = 0 \\
\end{gathered} $
Therefore, value of determinant,
$\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = 0$
Note: Use of trigonometric properties transforms complex determinant into simple determinant
So, first apply trigonometric properties and then expand the determinant. As this will be the
easiest and efficient way to get the solution of such problems.
Using the properties of trigonometry first, we make the determinant simple and then further solve it.
Also given
$A + B + C = \pi$
Applying trigonometric properties, we get
$
\sin (A + B + C) = \sin \pi = 0 \\
\cos (A + B) = \cos (\pi - C) = - \cos C \\
$
Putting these values in the determinant, we get
$
\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
0&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{ - \cos C}&{ - \tan A}&0
\end{array}} \right| \\
\\
$
Now expanding the determinant through row${R_1}$,we get
$\begin{gathered}
\Delta = 0\left| {\begin{array}{*{20}{c}}
0&{\tan A} \\
{ - \tan A}&0
\end{array}} \right| + ( - \sin B)\left| {\begin{array}{*{20}{c}}
{\sin B}&{\tan A} \\
{ - \cos C}&0
\end{array}} \right| + \cos C\left| {\begin{array}{*{20}{c}}
{\sin B}&0 \\
{ - \cos C}&{ - \tan A}
\end{array}} \right| \\
\Delta = - \sin B(0 - (\tan A)( - \cos C)) + \cos C((\sin B)( - \tan A) - 0) \\
\Delta = \sin B\tan A\cos C - \sin B\tan A\cos C \\
\Delta = 0 \\
\end{gathered} $
Therefore, value of determinant,
$\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = 0$
Note: Use of trigonometric properties transforms complex determinant into simple determinant
So, first apply trigonometric properties and then expand the determinant. As this will be the
easiest and efficient way to get the solution of such problems.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
