
If \[B\] is a nonsingular matrix and \[A\] is a square matrix then \[\det \left( {{B^{ - 1}}AB} \right)\] is equal to
A. \[\det \left( A \right)\]
B. \[\det \left( B \right)\]
C. \[\det \left( {{B^{ - 1}}} \right)\]
D. \[\det \left( {{A^{ - 1}}} \right)\]
Answer
549.9k+ views
- Hint: First of all, split the matrices inside the determinants by using the multiplicative properties of determinants. Then make the product of two matrices equal to a unit matrix to obtain the required answer.
Complete step-by-step solution -
Given \[B\] is a nonsingular matrix and \[A\] is a square matrix.
Now, consider \[\det \left( {{B^{ - 1}}AB} \right)\]
We know that \[\det \left( {ABC} \right) = \det \left( A \right)\det \left( B \right)\det \left( C \right)\], so we have
\[\det \left( {{B^{ - 1}}AB} \right) = \det \left( {{B^{ - 1}}} \right)\det \left( A \right)\det \left( B \right)\]
As determinants obeys commutative property of multiplication, we have
\[\det \left( {{B^{ - 1}}AB} \right) = \det \left( {{B^{ - 1}}} \right)\det \left( B \right)\det \left( A \right)\]
We know that, \[\det \left( {AB} \right) = \det \left( A \right)\det \left( B \right)\]
\[\det \left( {{B^{ - 1}}AB} \right) = \det \left( {{B^{ - 1}}B} \right)\det \left( A \right)\]
As \[{B^{ - 1}}B = I\], we have
\[\det \left( {{B^{ - 1}}AB} \right) = \det \left( I \right)\det \left( A \right)\]
We know that, \[\det \left( I \right) = 1\]
\[\therefore \det \left( {{B^{ - 1}}AB} \right) = \det \left( A \right)\]
Thus, the correct option is A. \[\det \left( A \right)\]
Note: The multiplicative property of determinants tells us that the det of product of the given matrices is equal to their product of individual det of matrices. The product of a matrix and its inverse matrix gives us a unit matrix.
Complete step-by-step solution -
Given \[B\] is a nonsingular matrix and \[A\] is a square matrix.
Now, consider \[\det \left( {{B^{ - 1}}AB} \right)\]
We know that \[\det \left( {ABC} \right) = \det \left( A \right)\det \left( B \right)\det \left( C \right)\], so we have
\[\det \left( {{B^{ - 1}}AB} \right) = \det \left( {{B^{ - 1}}} \right)\det \left( A \right)\det \left( B \right)\]
As determinants obeys commutative property of multiplication, we have
\[\det \left( {{B^{ - 1}}AB} \right) = \det \left( {{B^{ - 1}}} \right)\det \left( B \right)\det \left( A \right)\]
We know that, \[\det \left( {AB} \right) = \det \left( A \right)\det \left( B \right)\]
\[\det \left( {{B^{ - 1}}AB} \right) = \det \left( {{B^{ - 1}}B} \right)\det \left( A \right)\]
As \[{B^{ - 1}}B = I\], we have
\[\det \left( {{B^{ - 1}}AB} \right) = \det \left( I \right)\det \left( A \right)\]
We know that, \[\det \left( I \right) = 1\]
\[\therefore \det \left( {{B^{ - 1}}AB} \right) = \det \left( A \right)\]
Thus, the correct option is A. \[\det \left( A \right)\]
Note: The multiplicative property of determinants tells us that the det of product of the given matrices is equal to their product of individual det of matrices. The product of a matrix and its inverse matrix gives us a unit matrix.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
