
If four coins are tossed, find the chance that there should be two heads and two tails.
Answer
558k+ views
Hint- Here, we will be using the general formula for probability i.e., Probability of occurrence of an event$ = \dfrac{{{\text{Number of favourable outcomes}}}}{{{\text{Total number of possible outcomes}}}}$ in order to find the required probability.
Given that we are tossing four coins and we have to find out the probability of obtaining two heads and two tails.
According to general formula for probability of occurrence of an event, we can write
Probability of occurrence of an event$ = \dfrac{{{\text{Number of favourable outcomes}}}}{{{\text{Total number of possible outcomes}}}}$
By tossing four coins, the possible outcomes are (H,H,H,H), (T,H,H,H), (H,T,H,H), (H,H,T,H), (H,H,H,T), (T,T,H,H), (T,H,T,H), (T,H,H,T), (H,T,T,H), (H,T,H,T), (H,H,T,T), (T,T,T,H), (T,T,H,T), (T,H,T,T), (H,T,T,T), (T,T,T,T) where H represents occurrence of head while tossing a coin and T represents occurrence of tail while tossing a coin.
Therefore, Total number of possible outcomes = 16
Here, the favourable event is getting two heads and two tails on tossing four coins.
Clearly, the favourable outcomes after tossing four coins are (T,T,H,H), (T,H,T,H), (T,H,H,T), (H,T,T,H), (H,T,H,T) and (H,H,T,T).
Therefore, Number of favourable outcomes = 6
Probability of obtaining two heads and two tails $ = \dfrac{{\text{6}}}{{{\text{16}}}} = \dfrac{3}{8}$.
Hence, the chance that there should be two heads and two tails after tossing four coins is $\dfrac{3}{8}$.
Note- In these types of problems, where tossing of n coins is associated we already have a formula for calculating the total number of possible cases that will occur when n coins are tossed. i.e., Total number of possible outcomes when n coins are tossed =${2^{\text{n}}}$ (in this case n=4 that’s why total number of possible outcomes =${2^4} = 16$).
Given that we are tossing four coins and we have to find out the probability of obtaining two heads and two tails.
According to general formula for probability of occurrence of an event, we can write
Probability of occurrence of an event$ = \dfrac{{{\text{Number of favourable outcomes}}}}{{{\text{Total number of possible outcomes}}}}$
By tossing four coins, the possible outcomes are (H,H,H,H), (T,H,H,H), (H,T,H,H), (H,H,T,H), (H,H,H,T), (T,T,H,H), (T,H,T,H), (T,H,H,T), (H,T,T,H), (H,T,H,T), (H,H,T,T), (T,T,T,H), (T,T,H,T), (T,H,T,T), (H,T,T,T), (T,T,T,T) where H represents occurrence of head while tossing a coin and T represents occurrence of tail while tossing a coin.
Therefore, Total number of possible outcomes = 16
Here, the favourable event is getting two heads and two tails on tossing four coins.
Clearly, the favourable outcomes after tossing four coins are (T,T,H,H), (T,H,T,H), (T,H,H,T), (H,T,T,H), (H,T,H,T) and (H,H,T,T).
Therefore, Number of favourable outcomes = 6
Probability of obtaining two heads and two tails $ = \dfrac{{\text{6}}}{{{\text{16}}}} = \dfrac{3}{8}$.
Hence, the chance that there should be two heads and two tails after tossing four coins is $\dfrac{3}{8}$.
Note- In these types of problems, where tossing of n coins is associated we already have a formula for calculating the total number of possible cases that will occur when n coins are tossed. i.e., Total number of possible outcomes when n coins are tossed =${2^{\text{n}}}$ (in this case n=4 that’s why total number of possible outcomes =${2^4} = 16$).
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
