
If $f(x) = \dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}},x \ne 0{\text{ and f}}\left( 0 \right) = 0$, then $f(x)$ is
(a) Continuous at $0$
(b) Right continuous at $0$
(c) Discontinuous at $0$
(d) Left continuous at $0$
Answer
560.4k+ views
Hint- Calculate left hand and right hand limit at the required point where continuity is asked.
We have to comment upon the continuity of $f(x) = \dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}},x \ne 0{\text{ }}$at x=0
Let’s calculate the left hand side limit for this $f(x)$
$ \Rightarrow f{(x)_{x \to {0^ - }}} = f{(0 - h)_{h \to 0}} = f{( - h)_{h \to 0}}$
So $f{(x)_{x \to {0^ - }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{\dfrac{{ - 1}}{h}}} - 1}}{{{e^{\dfrac{{ - 1}}{h}}} + 1}}$
We can write this down as
$f{(x)_{x \to {0^ - }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{e^{\dfrac{1}{h}}}}} - 1}}{{\dfrac{1}{{{e^{\dfrac{1}{h}}}}} + 1}}$
Now let’s substitute 0 in place of h we get
$f{(x)_{x \to {0^ - }}} = \dfrac{{\dfrac{1}{{{e^{\dfrac{1}{0}}}}} - 1}}{{\dfrac{1}{{{e^{\dfrac{1}{0}}}}} + 1}}$
Now we know that $\dfrac{1}{0} = \infty {\text{ and }}{{\text{e}}^{\dfrac{1}{0}}} = {e^\infty } = \infty $
Putting it above we get
$ \Rightarrow f{(x)_{x \to {0^ - }}} = \dfrac{{\dfrac{1}{\infty } - 1}}{{\dfrac{1}{\infty } + 1}} = \dfrac{{0 - 1}}{{0 + 1}} = - 1$
So the left hand limit is -1, now let’s compute the Right side limit
$ \Rightarrow f{(x)_{x \to {0^ + }}} = f{(0 + h)_{h \to 0}} = f{(h)_{h \to 0}}$
$f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{\dfrac{1}{h}}} - 1}}{{{e^{\dfrac{1}{h}}} + 1}}$
Now we will be taking ${e^{\dfrac{1}{h}}}$ common from the denominator as well as from the numerator
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \dfrac{1}{{{e^{\dfrac{1}{h}}}}}}}{{1 + \dfrac{1}{{{e^{\dfrac{1}{h}}}}}}}$
Now let’s substitute 0 in place of h we get
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \dfrac{1}{{{e^{\dfrac{1}{0}}}}}}}{{1 + \dfrac{1}{{{e^{\dfrac{1}{0}}}}}}}$
Now we know that $\dfrac{1}{0} = \infty {\text{ and }}{{\text{e}}^{\dfrac{1}{0}}} = {e^\infty } = \infty $ putting it above we get
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \dfrac{{1 - \dfrac{1}{\infty }}}{{1 + \dfrac{1}{\infty }}} = \dfrac{{1 - 0}}{{1 + 0}} = 1$
Now clearly the left hand limit at $x = 0$ is not equal to the right hand limit at $x = 0$. Hence given $f(x)$ is discontinuous at $x = 0$
Hence option (c) is correct
Note- Whenever we are told to comment upon the continuity of a given function at a specific point, approach the point first from left side and then from right side if both the limits are equal and it is equal to the value of the function at that point then the function is continuous at that point.
We have to comment upon the continuity of $f(x) = \dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}},x \ne 0{\text{ }}$at x=0
Let’s calculate the left hand side limit for this $f(x)$
$ \Rightarrow f{(x)_{x \to {0^ - }}} = f{(0 - h)_{h \to 0}} = f{( - h)_{h \to 0}}$
So $f{(x)_{x \to {0^ - }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{\dfrac{{ - 1}}{h}}} - 1}}{{{e^{\dfrac{{ - 1}}{h}}} + 1}}$
We can write this down as
$f{(x)_{x \to {0^ - }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{e^{\dfrac{1}{h}}}}} - 1}}{{\dfrac{1}{{{e^{\dfrac{1}{h}}}}} + 1}}$
Now let’s substitute 0 in place of h we get
$f{(x)_{x \to {0^ - }}} = \dfrac{{\dfrac{1}{{{e^{\dfrac{1}{0}}}}} - 1}}{{\dfrac{1}{{{e^{\dfrac{1}{0}}}}} + 1}}$
Now we know that $\dfrac{1}{0} = \infty {\text{ and }}{{\text{e}}^{\dfrac{1}{0}}} = {e^\infty } = \infty $
Putting it above we get
$ \Rightarrow f{(x)_{x \to {0^ - }}} = \dfrac{{\dfrac{1}{\infty } - 1}}{{\dfrac{1}{\infty } + 1}} = \dfrac{{0 - 1}}{{0 + 1}} = - 1$
So the left hand limit is -1, now let’s compute the Right side limit
$ \Rightarrow f{(x)_{x \to {0^ + }}} = f{(0 + h)_{h \to 0}} = f{(h)_{h \to 0}}$
$f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{\dfrac{1}{h}}} - 1}}{{{e^{\dfrac{1}{h}}} + 1}}$
Now we will be taking ${e^{\dfrac{1}{h}}}$ common from the denominator as well as from the numerator
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \dfrac{1}{{{e^{\dfrac{1}{h}}}}}}}{{1 + \dfrac{1}{{{e^{\dfrac{1}{h}}}}}}}$
Now let’s substitute 0 in place of h we get
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \dfrac{1}{{{e^{\dfrac{1}{0}}}}}}}{{1 + \dfrac{1}{{{e^{\dfrac{1}{0}}}}}}}$
Now we know that $\dfrac{1}{0} = \infty {\text{ and }}{{\text{e}}^{\dfrac{1}{0}}} = {e^\infty } = \infty $ putting it above we get
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \dfrac{{1 - \dfrac{1}{\infty }}}{{1 + \dfrac{1}{\infty }}} = \dfrac{{1 - 0}}{{1 + 0}} = 1$
Now clearly the left hand limit at $x = 0$ is not equal to the right hand limit at $x = 0$. Hence given $f(x)$ is discontinuous at $x = 0$
Hence option (c) is correct
Note- Whenever we are told to comment upon the continuity of a given function at a specific point, approach the point first from left side and then from right side if both the limits are equal and it is equal to the value of the function at that point then the function is continuous at that point.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
