
If pressure and temperature of an ideal gas are doubled and volume is halved, the number of molecules of the gas
(A) Becomes half
(B) Becomes two times
(C) Becomes four times
(D) Remains constant
Answer
169.2k+ views
Hint Use the equation of ideal gas law. Use Boyle’s law equation to find the relation between pressure and volume. Apply the given conditions to the ideal gas law equation and find what happens to the n value.
Complete Step By Step Solution
We know the ideal gas law is obtained from Boyle's law. Boyle’s Law states that for a fixed mass of gas at a constant temperature, the volume of the gas is inversely proportional to the pressure of the gas.
Which means that
\[P \propto \dfrac{1}{V}\]
Where P is the pressure of the gas and V is the volume of the gas molecule
Now,
\[PV = C\] , where C defines a constant
\[PV = nRT\] , Where n is number of moles of gas molecules of fixed mass, R is gas constant and T is the temperature of the gas
Now in our case, it is given as Pressure of the ideal gas is doubled and Volume of the ideal gas is halved.
This means that
\[P = 2P\] and \[V = \dfrac{V}{2}\]
Applying this condition to the ideal gas equation given above, we get
\[2P \times \dfrac{V}{2} = nRT\]
It is also given that the temperature of the gas is doubled. Applying this to the above mentioned equation, we get,
\[P \times V = nRT \times 2\]
Taking n on one side, we get
\[n = \dfrac{{P \times V}}{{2 \times RT}}\]
From the above equation it is seen that, number of molecules or moles is halved , when the pressure and temperature are increased and volume is halved.
Thus , Option(A) is the right answer.
Note
The given question can also be solved by considering Charles law, which states that for a fixed mass at constant pressure on the gas, the volume of the gas is directly proportional to the temperature of the gas.
Complete Step By Step Solution
We know the ideal gas law is obtained from Boyle's law. Boyle’s Law states that for a fixed mass of gas at a constant temperature, the volume of the gas is inversely proportional to the pressure of the gas.
Which means that
\[P \propto \dfrac{1}{V}\]
Where P is the pressure of the gas and V is the volume of the gas molecule
Now,
\[PV = C\] , where C defines a constant
\[PV = nRT\] , Where n is number of moles of gas molecules of fixed mass, R is gas constant and T is the temperature of the gas
Now in our case, it is given as Pressure of the ideal gas is doubled and Volume of the ideal gas is halved.
This means that
\[P = 2P\] and \[V = \dfrac{V}{2}\]
Applying this condition to the ideal gas equation given above, we get
\[2P \times \dfrac{V}{2} = nRT\]
It is also given that the temperature of the gas is doubled. Applying this to the above mentioned equation, we get,
\[P \times V = nRT \times 2\]
Taking n on one side, we get
\[n = \dfrac{{P \times V}}{{2 \times RT}}\]
From the above equation it is seen that, number of molecules or moles is halved , when the pressure and temperature are increased and volume is halved.
Thus , Option(A) is the right answer.
Note
The given question can also be solved by considering Charles law, which states that for a fixed mass at constant pressure on the gas, the volume of the gas is directly proportional to the temperature of the gas.
Recently Updated Pages
Order of Reaction in Chemistry: Definition, Formula & Examples

Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Uniform Acceleration

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
