
In a family, each daughter has the same number of brothers as she has sisters and each son has twice as many sisters as he has brothers. How many sons are there in the family?
A) 2
B) 3
C) 4
D) 5
Answer
169.2k+ views
Hint - Convert each of the sentences into equations using variables. Transform one equation such that one variable is in terms of the other. Substitute one variable in the other equation. Obtain the value of the variable and substitute for the other.
Complete step by step answer:
Let d represent the number of daughters and let s represent the number of sons.
Given, each daughter has the same number of brothers as she has sisters
Then, we have
d - 1 = s - Equation (1)
Because the daughter cannot consider herself as one of the sisters hence d-1.
Each son has twice as many sisters as he has brothers
Then, we have
2 (s - 1) = d -- Equation (2)
Because the son cannot consider himself as one of the brothers hence s-1.
Equation (1) can be manipulated and written as
d = s+1 -- Equation (3)
Substitute d in equation (2)
⟹2 (s - 1) = d
⟹2 (s - 1) = s+1
⟹2s – 2 = s+1
⟹s = 3
Substitute s in equation (3) to get the value of d
⟹d = s+1
⟹d = 3+1
⟹d = 4
Hence, d = 4 and s = 3.
The numbers of sons in the family are 3. Hence Option B is the correct answer.
Note – Converting the sentences into equations is the crucial step in such problems. You can clearly see that this is a clear case of 2 equations and 2 variables after conversion. Upon solving we obtain the values of both the variables. The key is to transform one of the equations such that we have one variable in terms of another. Then the other equation reduces into a single variable equation and becomes easier to solve. On finding the value of one variable the other can be found simply by substituting.
Complete step by step answer:
Let d represent the number of daughters and let s represent the number of sons.
Given, each daughter has the same number of brothers as she has sisters
Then, we have
d - 1 = s - Equation (1)
Because the daughter cannot consider herself as one of the sisters hence d-1.
Each son has twice as many sisters as he has brothers
Then, we have
2 (s - 1) = d -- Equation (2)
Because the son cannot consider himself as one of the brothers hence s-1.
Equation (1) can be manipulated and written as
d = s+1 -- Equation (3)
Substitute d in equation (2)
⟹2 (s - 1) = d
⟹2 (s - 1) = s+1
⟹2s – 2 = s+1
⟹s = 3
Substitute s in equation (3) to get the value of d
⟹d = s+1
⟹d = 3+1
⟹d = 4
Hence, d = 4 and s = 3.
The numbers of sons in the family are 3. Hence Option B is the correct answer.
Note – Converting the sentences into equations is the crucial step in such problems. You can clearly see that this is a clear case of 2 equations and 2 variables after conversion. Upon solving we obtain the values of both the variables. The key is to transform one of the equations such that we have one variable in terms of another. Then the other equation reduces into a single variable equation and becomes easier to solve. On finding the value of one variable the other can be found simply by substituting.
Recently Updated Pages
Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Molarity vs Molality: Definitions, Formulas & Key Differences

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

NIT Cutoff Percentile for 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Importance of studying Mole Fraction

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

Total MBBS Seats in India 2025: Government and Private Medical Colleges

NEET Total Marks 2025
