
Let $a=\min \left\{ {{x}^{2}}+2x+3,x\in R \right\}$ and $b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{1-\cos \theta }{{{\theta }^{2}}}$. The value of $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$ is
(a) $\dfrac{{{2}^{n+1}}-1}{{{3.2}^{n}}}$
(b) $\dfrac{{{2}^{n+1}}+1}{{{3.2}^{n}}}$
(c) $\dfrac{{{4}^{n+1}}-1}{{{3.2}^{n}}}$
(d) none of these
Answer
558k+ views
Hint: $'a'$ can be found out by using the formula for minimum value of a quadratic polynomial. We can use the L' Hopital rule to find $'b'$ . The required answer in the form of summation is a Geometric progression.
In the question, it is given $a=\min \left\{ {{x}^{2}}+2x+3,x\in R \right\}$
$\Rightarrow a=$ minimum value of ${{x}^{2}}+2x+3$
For a quadratic polynomial $a{{x}^{2}}+bx+c$, the minimum value is given by the formula,
$\dfrac{-\left( {{b}^{2}}-4ac \right)}{4a}.............\left( 1 \right)$
Since the polynomial given in the question is ${{x}^{2}}+2x+3$, substituting $a=1,b=2,c=3$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& a=\dfrac{-\left( {{\left( 2 \right)}^{2}}-4\left( 1 \right)\left( 3 \right) \right)}{4\left( 1 \right)} \\
& \Rightarrow a=\dfrac{-\left( 4-12 \right)}{4} \\
& \Rightarrow a=\dfrac{-\left( -8 \right)}{4} \\
& \Rightarrow a=\dfrac{8}{4} \\
& \Rightarrow a=2...........\left( 2 \right) \\
\end{align}$
Also, it is given in the question $b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{1-\cos \theta }{{{\theta }^{2}}}$. If we substitute $\theta =0$ in the limit function, we can notice that this limit is of the form \[\dfrac{0}{0}\]. Since this limit is of the form \[\dfrac{0}{0}\], we can use L’ Hopital rule to solve this limit. In L’ Hopital rule, we individually differentiate the numerator and the denominator with respect to the limit variable i.e. $\theta $ in this case and then apply the limit again.
Applying L’ Hopital rule on $b$, we get,
$\begin{align}
& b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( 1-\cos \theta \right)}{d\theta }}{\dfrac{d{{\theta }^{2}}}{d\theta }} \\
& \Rightarrow b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{2\theta } \\
& \Rightarrow b=\dfrac{1}{2}\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }...........\left( 3 \right) \\
\end{align}$
There is a formula $\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1$. Substituting $\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1$ in equation $\left( 3 \right)$, we get,
$b=\dfrac{1}{2}...........\left( 4 \right)$
In the question, it is asked to find the value of $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$. Substituting equation $\left( 2 \right)$ and equation $\left( 4 \right)$ in $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$, we get,
\[\begin{align}
& \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r}}.\dfrac{1}{{{2}^{n-r}}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-\left( n-r \right)}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-n+r}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{2r-n}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{2}^{2r}}}{{{2}^{n}}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{4}^{r}}}{{{2}^{n}}}} \\
\end{align}\]
Since the limits of this summation is with respect to $r$, we can take $\dfrac{1}{{{2}^{n}}}$ out of the summation.
\[\Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\sum\limits_{r=0}^{n}{{{4}^{r}}}\]
Evaluating the summation, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( {{4}^{0}}+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( 1+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right).........\left( 5 \right) \\
& \\
\end{align}\]
The above series is a geometric progression of which we have to calculate the sum.
The sum of the G.P. $a,ar,a{{r}^{2}},a{{r}^{3}},............,a{{r}^{x}}$ is given by the formula,
$S=\dfrac{a\left( {{r}^{x}}-1 \right)}{r-1}........\left( 6 \right)$
From equation $\left( 5 \right)$, substituting $a=1,r=4,x=n+1$ in equation $\left( 6 \right)$, we get,
\[\begin{align}
& \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{1\left( {{4}^{n+1}}-1 \right)}{4-1} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{{{4}^{n+1}}-1}{3} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{{{4}^{n+1}}-1}{{{2}^{n}}.3} \\
\end{align}\]
So the answer is option (c)
Note: There is a possibility of error while finding the value of $b$, since it involves derivative of $\cos x$ which is equal to $-\sin x$. But sometimes, we may get confused while applying the negative sign and may write the derivative of $\cos x$ as $\sin x$ which will lead to an incorrect answer.
In the question, it is given $a=\min \left\{ {{x}^{2}}+2x+3,x\in R \right\}$
$\Rightarrow a=$ minimum value of ${{x}^{2}}+2x+3$
For a quadratic polynomial $a{{x}^{2}}+bx+c$, the minimum value is given by the formula,
$\dfrac{-\left( {{b}^{2}}-4ac \right)}{4a}.............\left( 1 \right)$
Since the polynomial given in the question is ${{x}^{2}}+2x+3$, substituting $a=1,b=2,c=3$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& a=\dfrac{-\left( {{\left( 2 \right)}^{2}}-4\left( 1 \right)\left( 3 \right) \right)}{4\left( 1 \right)} \\
& \Rightarrow a=\dfrac{-\left( 4-12 \right)}{4} \\
& \Rightarrow a=\dfrac{-\left( -8 \right)}{4} \\
& \Rightarrow a=\dfrac{8}{4} \\
& \Rightarrow a=2...........\left( 2 \right) \\
\end{align}$
Also, it is given in the question $b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{1-\cos \theta }{{{\theta }^{2}}}$. If we substitute $\theta =0$ in the limit function, we can notice that this limit is of the form \[\dfrac{0}{0}\]. Since this limit is of the form \[\dfrac{0}{0}\], we can use L’ Hopital rule to solve this limit. In L’ Hopital rule, we individually differentiate the numerator and the denominator with respect to the limit variable i.e. $\theta $ in this case and then apply the limit again.
Applying L’ Hopital rule on $b$, we get,
$\begin{align}
& b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( 1-\cos \theta \right)}{d\theta }}{\dfrac{d{{\theta }^{2}}}{d\theta }} \\
& \Rightarrow b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{2\theta } \\
& \Rightarrow b=\dfrac{1}{2}\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }...........\left( 3 \right) \\
\end{align}$
There is a formula $\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1$. Substituting $\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1$ in equation $\left( 3 \right)$, we get,
$b=\dfrac{1}{2}...........\left( 4 \right)$
In the question, it is asked to find the value of $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$. Substituting equation $\left( 2 \right)$ and equation $\left( 4 \right)$ in $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$, we get,
\[\begin{align}
& \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r}}.\dfrac{1}{{{2}^{n-r}}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-\left( n-r \right)}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-n+r}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{2r-n}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{2}^{2r}}}{{{2}^{n}}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{4}^{r}}}{{{2}^{n}}}} \\
\end{align}\]
Since the limits of this summation is with respect to $r$, we can take $\dfrac{1}{{{2}^{n}}}$ out of the summation.
\[\Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\sum\limits_{r=0}^{n}{{{4}^{r}}}\]
Evaluating the summation, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( {{4}^{0}}+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( 1+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right).........\left( 5 \right) \\
& \\
\end{align}\]
The above series is a geometric progression of which we have to calculate the sum.
The sum of the G.P. $a,ar,a{{r}^{2}},a{{r}^{3}},............,a{{r}^{x}}$ is given by the formula,
$S=\dfrac{a\left( {{r}^{x}}-1 \right)}{r-1}........\left( 6 \right)$
From equation $\left( 5 \right)$, substituting $a=1,r=4,x=n+1$ in equation $\left( 6 \right)$, we get,
\[\begin{align}
& \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{1\left( {{4}^{n+1}}-1 \right)}{4-1} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{{{4}^{n+1}}-1}{3} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{{{4}^{n+1}}-1}{{{2}^{n}}.3} \\
\end{align}\]
So the answer is option (c)
Note: There is a possibility of error while finding the value of $b$, since it involves derivative of $\cos x$ which is equal to $-\sin x$. But sometimes, we may get confused while applying the negative sign and may write the derivative of $\cos x$ as $\sin x$ which will lead to an incorrect answer.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
