
Light of wavelength $5000\overset{{}^\circ }{\mathop{\text{A}}}\,$ falls on a sensitive plate with photoelectric work function of $1.9eV$ . The maximum kinetic energy of the photoelectron emitted will be.
A. $1.16eV$
B. $2.38eV$
C. $0.58eV$
D. $2.98eV$
Answer
537k+ views
Hint: First of all we will find the incident energy of light by using the formula, ${{E}_{i}}=\dfrac{hc}{\lambda }$ and then we will convert it into electron volt i.e. ${{E}_{v}}$. Then, we will find the maximum kinetic energy of the proton emitted by taking the difference of energy of electron volt and photoelectric function.
Formula used: ${{E}_{i}}=\dfrac{hc}{\lambda }$
Complete step-by-step answer:
In the question we are given that light of wavelength $5000\overset{{}^\circ }{\mathop{\text{A}}}\,$ falls on a sensitive plate with photoelectric work function of $1.9eV$, so first of all we will find the energy of the light by using the formula,
${{E}_{i}}=\dfrac{hc}{\lambda }$ …………………(i)
Where, $\lambda $ is the wavelength of the light, c is velocity if light and h is the plank constant.
Now, in question it is given that wavelength of light is $5000\overset{{}^\circ }{\mathop{\text{A}}}\,$and in order to find the incident energy in terms of electron volt the value of $hc$ can be given as 12375. So, on substituting the values in equation (i) we will get,
${{E}_{i\left( eV \right)}}=\dfrac{hc}{\lambda }=\dfrac{12375}{5000\times {{10}^{-10}}}=2.475eV$
Now, we will find the maximum kinetic energy emitted by the proton by taking the difference of electron energy and proton energy as,
${{\alpha }_{\max }}={{E}_{i\left( eV \right)}}-\varphi $
${{\alpha }_{\max }}=2.475-1.9=0.575eV\cong 0.58eV$.
Thus, maximum kinetic energy can be given as $0.58eV$.
Hence, option (a) is the correct answer.
Note: Students might forget to convert the incident energy into electron volt energy and due to that they might not get the desired answer. Students should also know the values of Planck’s constant and velocity of light to convert it into electron volt energy.
Formula used: ${{E}_{i}}=\dfrac{hc}{\lambda }$
Complete step-by-step answer:
In the question we are given that light of wavelength $5000\overset{{}^\circ }{\mathop{\text{A}}}\,$ falls on a sensitive plate with photoelectric work function of $1.9eV$, so first of all we will find the energy of the light by using the formula,
${{E}_{i}}=\dfrac{hc}{\lambda }$ …………………(i)
Where, $\lambda $ is the wavelength of the light, c is velocity if light and h is the plank constant.
Now, in question it is given that wavelength of light is $5000\overset{{}^\circ }{\mathop{\text{A}}}\,$and in order to find the incident energy in terms of electron volt the value of $hc$ can be given as 12375. So, on substituting the values in equation (i) we will get,
${{E}_{i\left( eV \right)}}=\dfrac{hc}{\lambda }=\dfrac{12375}{5000\times {{10}^{-10}}}=2.475eV$
Now, we will find the maximum kinetic energy emitted by the proton by taking the difference of electron energy and proton energy as,
${{\alpha }_{\max }}={{E}_{i\left( eV \right)}}-\varphi $
${{\alpha }_{\max }}=2.475-1.9=0.575eV\cong 0.58eV$.
Thus, maximum kinetic energy can be given as $0.58eV$.
Hence, option (a) is the correct answer.
Note: Students might forget to convert the incident energy into electron volt energy and due to that they might not get the desired answer. Students should also know the values of Planck’s constant and velocity of light to convert it into electron volt energy.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
