
Moment of inertia of solid sphere about its diameter is I. If that sphere is recast into 8 identical small spheres, then the moment of inertia of a small sphere about its diameter is:
(A) $\dfrac{I}{8}$
(B) $\dfrac{I}{{16}}$
(C) $\dfrac{I}{{24}}$
(D) $\dfrac{I}{{32}}$
Answer
459.1k+ views
Hint: Moment of Inertia (M.I.) of the solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$.As this sphere is recast into 8 smaller spheres hence the mass of smaller spheres is \[\dfrac{M}{8}\]. As the material of both the materials is the same thus density remains the same.
Formula used
Moment of Inertia (M.I.) of the solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
$\rho = \dfrac{M}{V}$ where$\rho $ is the density, $M$ is the mass, $V$ is the volume.
$V = \dfrac{{4\pi {R^3}}}{3}$ Where $R$is the radius and $V$ is the volume.
Complete step by step solution:
Let Mass and radius of the bigger sphere be $M$ and$R$.
So the moment of inertia is $I = \dfrac{{2M{R^2}}}{5}$
As this sphere is recast into 8 smaller spheres hence the mass of smaller spheres is \[\dfrac{M}{8}\] and let radius be $r$ .
As the material of both the materials is the same thus density remains the same from this we can calculate the radius r of the new smaller sphere formed.
From,
($\rho $ is the density, $M$ is the mass, $V$ is the volume)
$\rho = \dfrac{M}{V}$
Volume of a sphere of radius R is \[ {V_R} = \dfrac{{4\pi {R^3}}}{3}\]
For a sphere of mass $M$ and radius$R$,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}}$
Volume of a sphere of radius r is \[ {V_r}= \dfrac{{4\pi {r^3}}}{3}\]
For a sphere of mass \[\dfrac{M}{8}\] and radius $r$
$\rho = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
From the above two equation and as both spheres have density we can assert that,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow {r^3} = \dfrac{{{R^3}}}{8}$
$ \Rightarrow r = \dfrac{R}{2}$
As the moment of inertia of solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
So the moment of inertia of the smaller sphere whose mass (M) is \[\dfrac{M}{8}\] and radius(R) is$\dfrac{R}{2}$
${I_{smaller-sphere}}= \dfrac{{2 \times \dfrac{M}{8} \times {{(\dfrac{R}{2})}^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}}= \dfrac{{2M{R^2}}}{{5 \times 32}}$
As $I = \dfrac{{2M{R^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}} = \dfrac{I}{{32}}$
Hence the answer to this question is (D) $\dfrac{I}{{32}}$
Note:
Always remember that $I = \dfrac{{2M{R^2}}}{5}$is the moment of inertia of solid sphere along its diameter and not $I = \dfrac{{2M{R^2}}}{3}$ which is the moment of inertia of hollow sphere along its diameter also be careful about the mentioned axis about which the moment of inertia is being written these small checks while attempting a question can save you from silly mistakes in the exam.
Formula used
Moment of Inertia (M.I.) of the solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
$\rho = \dfrac{M}{V}$ where$\rho $ is the density, $M$ is the mass, $V$ is the volume.
$V = \dfrac{{4\pi {R^3}}}{3}$ Where $R$is the radius and $V$ is the volume.
Complete step by step solution:
Let Mass and radius of the bigger sphere be $M$ and$R$.
So the moment of inertia is $I = \dfrac{{2M{R^2}}}{5}$
As this sphere is recast into 8 smaller spheres hence the mass of smaller spheres is \[\dfrac{M}{8}\] and let radius be $r$ .
As the material of both the materials is the same thus density remains the same from this we can calculate the radius r of the new smaller sphere formed.
From,
($\rho $ is the density, $M$ is the mass, $V$ is the volume)
$\rho = \dfrac{M}{V}$
Volume of a sphere of radius R is \[ {V_R} = \dfrac{{4\pi {R^3}}}{3}\]
For a sphere of mass $M$ and radius$R$,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}}$
Volume of a sphere of radius r is \[ {V_r}= \dfrac{{4\pi {r^3}}}{3}\]
For a sphere of mass \[\dfrac{M}{8}\] and radius $r$
$\rho = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
From the above two equation and as both spheres have density we can assert that,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow {r^3} = \dfrac{{{R^3}}}{8}$
$ \Rightarrow r = \dfrac{R}{2}$
As the moment of inertia of solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
So the moment of inertia of the smaller sphere whose mass (M) is \[\dfrac{M}{8}\] and radius(R) is$\dfrac{R}{2}$
${I_{smaller-sphere}}= \dfrac{{2 \times \dfrac{M}{8} \times {{(\dfrac{R}{2})}^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}}= \dfrac{{2M{R^2}}}{{5 \times 32}}$
As $I = \dfrac{{2M{R^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}} = \dfrac{I}{{32}}$
Hence the answer to this question is (D) $\dfrac{I}{{32}}$
Note:
Always remember that $I = \dfrac{{2M{R^2}}}{5}$is the moment of inertia of solid sphere along its diameter and not $I = \dfrac{{2M{R^2}}}{3}$ which is the moment of inertia of hollow sphere along its diameter also be careful about the mentioned axis about which the moment of inertia is being written these small checks while attempting a question can save you from silly mistakes in the exam.
Recently Updated Pages
Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Uniform Acceleration

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
