
What is the probability of getting a number less than 5 when an unbiased die is thrown?
Answer
557.1k+ views
Hint: To find the probability involving the case when an unbiased die is thrown, we first find the total number of outcomes possible. Then we find the desired number of outcomes for the particular question and then use the definition of probability to find the answer.
Complete step-by-step solution:
First, we start with the meaning of the term probability. Probability helps us to find out the likelihood of an event to occur. For example, if in a weather forecast, it is said that there is 80% chance for the day to be rainy, this means that the probability for it to rain on that particular day is 0.8 (basically, we convert percentage to decimal by dividing by 100). Another example is that of a coin toss. The total number of outcomes in this case is 2 (heads and tails). To get the desired outcome (say heads), the probability is 0.5 since it is equally likely to be heads or tails.
Now, coming to the above question. First, we find out the total number of outcomes. The number of outcomes would be six (that is- 1,2,3,4,5 and 6). Now, the desired number of outcomes are the numbers less than 5. These include – 1,2,3 and 4 (that is, there are a total four outcomes). Now, to find probability,
Probability = $\dfrac{\text{Desired number of outcomes}}{\text{Total number of outcomes}}$
Probability = $\dfrac{4}{6}$
Probability = $\dfrac{2}{3}$
Hence, the required probability is $\dfrac{2}{3}$.
Note: An alternative to solve the problem is to use the following equation below-
Probability (number greater than equal to 5) + Probability (number less than 5) = 1 -- (1)
Now, we need to find the probability for the number to be less than 5. Thus, we can calculate the probability of the number greater than equal to 5. In this case, also the number of outcomes is 6. The desired number of outcomes is 2 (that is 5,6). Thus, calculating the probability is-
Probability = $\dfrac{\text{Desired number of outcomes}}{\text{Total number of outcomes}}$
Probability = $\dfrac{2}{6}$
Probability = $\dfrac{1}{3}$
Now, putting in expression (1), we get,
$\dfrac{1}{3}$ + Probability (number less than 5) = 1
Probability (number less than 5) = $\dfrac{2}{3}$
Hence, we can get back the same required probability by this method also.
Complete step-by-step solution:
First, we start with the meaning of the term probability. Probability helps us to find out the likelihood of an event to occur. For example, if in a weather forecast, it is said that there is 80% chance for the day to be rainy, this means that the probability for it to rain on that particular day is 0.8 (basically, we convert percentage to decimal by dividing by 100). Another example is that of a coin toss. The total number of outcomes in this case is 2 (heads and tails). To get the desired outcome (say heads), the probability is 0.5 since it is equally likely to be heads or tails.
Now, coming to the above question. First, we find out the total number of outcomes. The number of outcomes would be six (that is- 1,2,3,4,5 and 6). Now, the desired number of outcomes are the numbers less than 5. These include – 1,2,3 and 4 (that is, there are a total four outcomes). Now, to find probability,
Probability = $\dfrac{\text{Desired number of outcomes}}{\text{Total number of outcomes}}$
Probability = $\dfrac{4}{6}$
Probability = $\dfrac{2}{3}$
Hence, the required probability is $\dfrac{2}{3}$.
Note: An alternative to solve the problem is to use the following equation below-
Probability (number greater than equal to 5) + Probability (number less than 5) = 1 -- (1)
Now, we need to find the probability for the number to be less than 5. Thus, we can calculate the probability of the number greater than equal to 5. In this case, also the number of outcomes is 6. The desired number of outcomes is 2 (that is 5,6). Thus, calculating the probability is-
Probability = $\dfrac{\text{Desired number of outcomes}}{\text{Total number of outcomes}}$
Probability = $\dfrac{2}{6}$
Probability = $\dfrac{1}{3}$
Now, putting in expression (1), we get,
$\dfrac{1}{3}$ + Probability (number less than 5) = 1
Probability (number less than 5) = $\dfrac{2}{3}$
Hence, we can get back the same required probability by this method also.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
