
Prove that the equation of circle in the$z$plane can be written in the form$\alpha z\overline z + \overline \beta z + \beta \overline z + c = 0$. Deduce the equation of the line.
A. $\overline \beta z + \beta \overline z + c = 0$
B. $\overline \beta z - \beta \overline z + c = 0$
C. $\overline \beta z + \beta \overline z - c = 0$
D. None of these
Answer
558k+ views
Hint: Consider the standard form of circle in coordinate geometry then use basic formulas of complex numbers to convert it into complex form.
We know that, if$z = x + iy$then$\overline z = x - iy$and$x = \dfrac{{z + \overline z }}{2},y = \dfrac{{z - \overline z }}{{2i}},z\overline z = |z{|^2} = {x^2} + {y^2}$. The standard equation of the circle is$\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0$.We’ll use above mentioned formula to solve further as follows:
\[
\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0 \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) + f(\dfrac{{z - \overline z }}{i}) + c = 0{\text{ }}[{x^2} + {y^2} = z\overline z ,\dfrac{{z + \overline z }}{2} = x,\dfrac{{z - \overline z }}{{2i}} = y] \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) - if(z - \overline z ) + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (g - if)z + (g + if)\overline z + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (\overline \beta )z + (\beta )\overline z + c = 0{\text{ }}[\overline \beta = g - if,\beta = g + if] \\
\Rightarrow \alpha z\overline z + \overline \beta z + \beta \overline z + c = 0 \\
\]
It is in the same form as the given equation. Now observe from the standard form of the circle that if we put$\alpha = 0$then we’ll get the equation of a straight line. Hence putting$\alpha = 0$in the given equation we’ll get$\overline \beta z + \beta \overline z + c = 0$. Hence option A is the correct option.
Note: The hack in this question was to observe that, what’s the relation between the equation of a circle and straight line in the coordinate plane.
We know that, if$z = x + iy$then$\overline z = x - iy$and$x = \dfrac{{z + \overline z }}{2},y = \dfrac{{z - \overline z }}{{2i}},z\overline z = |z{|^2} = {x^2} + {y^2}$. The standard equation of the circle is$\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0$.We’ll use above mentioned formula to solve further as follows:
\[
\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0 \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) + f(\dfrac{{z - \overline z }}{i}) + c = 0{\text{ }}[{x^2} + {y^2} = z\overline z ,\dfrac{{z + \overline z }}{2} = x,\dfrac{{z - \overline z }}{{2i}} = y] \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) - if(z - \overline z ) + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (g - if)z + (g + if)\overline z + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (\overline \beta )z + (\beta )\overline z + c = 0{\text{ }}[\overline \beta = g - if,\beta = g + if] \\
\Rightarrow \alpha z\overline z + \overline \beta z + \beta \overline z + c = 0 \\
\]
It is in the same form as the given equation. Now observe from the standard form of the circle that if we put$\alpha = 0$then we’ll get the equation of a straight line. Hence putting$\alpha = 0$in the given equation we’ll get$\overline \beta z + \beta \overline z + c = 0$. Hence option A is the correct option.
Note: The hack in this question was to observe that, what’s the relation between the equation of a circle and straight line in the coordinate plane.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
