
The amount of heat energy $ Q $ , used to heat substances depends on its mass $ m $ , its specific heat capacity $ S $ and the change in temperature $ \Delta T $ of the substance. Using dimensional method, find expression for $ S $ ( Given that $ \left[ S \right] = \left[ {{L^2}{T^{ - 2}}{K^{ - 1}}} \right] $ )
(A) $ Qm\Delta T $
(B) $ \dfrac{Q}{{m\Delta T}} $
(C) $ \dfrac{{Qm}}{{\Delta T}} $
(D) $ \dfrac{m}{{Q\Delta T}} $
Answer
471.9k+ views
Hint :From the dimension of energy and mass find the expression for specific heat using dimensional analysis.The specific heat capacity is the proportionality constant and its value depends on the nature of the substance.
Complete Step By Step Answer:
We have given here that, the amount of heat energy is proportional to the mass of the substance, change in temperature of the substance and it is proportional to the specific heat of the substance.
So, let the heat energy of used is related to the mass of the substance as, $ Q \propto {m^x} $
it is related to the change in temperature as, $ Q \propto \Delta {T^y} $
and it is related to specific heat of the substance as, $ Q \propto {S^z} $
So, we can write from the theorem of complex proportionality,
$ Q \propto {m^x}{(\Delta T)^y}{S^z} $
$ Q = k{m^x}{(\Delta T)^y}{S^z} $ where, $ k $ is dimensionless constant.
Now, we know from dimensional analysis, the dimension of the right hand side of the equation and the left hand side of the equation will be the same.
Now, dimension of heat energy is equal to dimension of energy, $ [Q] = [E] = [M{L^2}{T^{ - 2}}] $ and it is given that, $ \left[ S \right] = \left[ {{L^2}{T^{ - 2}}{K^{ - 1}}} \right] $
So, we can write from dimensional analysis, $ [M{L^2}{T^{ - 2}}] = [{M^x}][{K^y}][{L^{2z}}{T^{ - 2z}}{K^{ - 1z}}] $
Or, $ [M{L^2}{T^{ - 2}}] = [{M^x}{L^{2z}}{T^{ - 2z}}{K^{y - z}}] $
Hence, comparing the power of both sides we can write, $ x = 1 $ ,
$ 2z = 2 $
Or, $ z = 1 $
$ y - z = 0 $
Or, $ y = z $
So, $ y = 1 $
Hence, we get the heat absorbed as, $ Q = {m^1}{(\Delta T)^1}{S^1} $ taking the value of constant coefficient as $ k = 1 $ for convenience.
Or, $ Q = m(\Delta T)S $
So, the expression of specific heat capacity becomes, $ S = \dfrac{Q}{{m(\Delta T)}} $
Hence, option (B ) is correct.
Note :
Here, we have taken the value of the dimensionless quantity one as per our convenience. The heat absorbed by a substance is directly proportional to the mass of the object and change in temperature.
Complete Step By Step Answer:
We have given here that, the amount of heat energy is proportional to the mass of the substance, change in temperature of the substance and it is proportional to the specific heat of the substance.
So, let the heat energy of used is related to the mass of the substance as, $ Q \propto {m^x} $
it is related to the change in temperature as, $ Q \propto \Delta {T^y} $
and it is related to specific heat of the substance as, $ Q \propto {S^z} $
So, we can write from the theorem of complex proportionality,
$ Q \propto {m^x}{(\Delta T)^y}{S^z} $
$ Q = k{m^x}{(\Delta T)^y}{S^z} $ where, $ k $ is dimensionless constant.
Now, we know from dimensional analysis, the dimension of the right hand side of the equation and the left hand side of the equation will be the same.
Now, dimension of heat energy is equal to dimension of energy, $ [Q] = [E] = [M{L^2}{T^{ - 2}}] $ and it is given that, $ \left[ S \right] = \left[ {{L^2}{T^{ - 2}}{K^{ - 1}}} \right] $
So, we can write from dimensional analysis, $ [M{L^2}{T^{ - 2}}] = [{M^x}][{K^y}][{L^{2z}}{T^{ - 2z}}{K^{ - 1z}}] $
Or, $ [M{L^2}{T^{ - 2}}] = [{M^x}{L^{2z}}{T^{ - 2z}}{K^{y - z}}] $
Hence, comparing the power of both sides we can write, $ x = 1 $ ,
$ 2z = 2 $
Or, $ z = 1 $
$ y - z = 0 $
Or, $ y = z $
So, $ y = 1 $
Hence, we get the heat absorbed as, $ Q = {m^1}{(\Delta T)^1}{S^1} $ taking the value of constant coefficient as $ k = 1 $ for convenience.
Or, $ Q = m(\Delta T)S $
So, the expression of specific heat capacity becomes, $ S = \dfrac{Q}{{m(\Delta T)}} $
Hence, option (B ) is correct.
Note :
Here, we have taken the value of the dimensionless quantity one as per our convenience. The heat absorbed by a substance is directly proportional to the mass of the object and change in temperature.
Recently Updated Pages
Physics and Measurement Mock Test 2025 – Practice Questions & Answers

NCERT Solutions For Class 5 English Marigold - The Little Bully

NCERT Solutions For Class 12 Maths Three Dimensional Geometry Exercise 11.1

NCERT Solutions For Class 11 English Woven Words (Poem) - Ajamil And The Tigers

NCERT Solutions For Class 6 Hindi Durva - Bhaaloo

NCERT Solutions For Class 12 Physics In Hindi - Wave Optics

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE
