
The centroid and a vertex of an equilateral triangle are $\left( 1,1 \right)$and $\left( 1,2 \right)$ respectively. Another vertex of the triangle can be
A) $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$
B) $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$
C) $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$
D) None of these
Answer
557.4k+ views
Hint: Centroid is the intersection point of medians. Orthocentre is the intersection point of altitudes. Circumcentre is the intersection point of perpendicular bisectors of sides of a triangle.
In the case of an equilateral triangle, median, altitude, and perpendicular bisector are the same. Hence, centroid, circumcentre, and orthocentre coincide.
In the case of an equilateral triangle, we know that centroid, orthocentre, and circumcentre coincide.
We also know that the circumcentre is equidistant from the vertices.
So , in the case of an equilateral triangle, the centroid is equidistant from the vertices.
Now, the given centroid is $G\left( 1,1 \right)$and one vertex is $A\left( 1,2 \right)$.
We, know the distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given as;
$\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}$
So, $AG=\sqrt{{{\left( 1-1 \right)}^{2}}+{{\left( 2-1 \right)}^{2}}}=1$
So, $A{{G}^{2}}=1$
Now, since $G$ is the centroid as well as the circumcentre, the other two vertices should lie on a circle with $G\left( 1,1 \right)$as the centre and $AG=1$ as the radius.
Now, we know that the equation of a circle with center at $\left( a,b \right)$ and radius$=r$ is given as
${{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}$
So, the equation of circumcircle becomes
${{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=1..........\left( i \right)$
So, the other two vertices should lie on this circle .
Now , we will check the options .
Option (a) :$\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$
We will substitute $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ in equation $\left( i \right)$.
On substituting $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$, we get;
$\begin{align}
& {{\left( \dfrac{2-\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{-\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow \dfrac{4}{4}=1 \\
& \Rightarrow 1=1 \\
& LHS=RHS \\
\end{align}$
So ,$\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ satisfies the equation and hence , can be one of the vertices .
Option (b): $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$
Now , we will substitute $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$.
On substituting $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$ we get,
$\begin{align}
& {{\left( \dfrac{2+3\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{3\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{27}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow \dfrac{28}{4}=1 \\
& \Rightarrow 7=1 \\
\end{align}$
Which is false i.e. $LHS\ne RHS$
So , $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$ does not satisfy the equation and hence cannot be the vertex of the triangle.
Option (c): $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$
Now , we will substitute $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation$\left( i \right)$.
On substituting $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$, we get
\[\begin{align}
& {{\left( \dfrac{2+\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow 1=1 \\
\end{align}\]
Which is true i.e. $LHS=RHS$
Hence , $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$can be a vertex of the triangle.
Therefore, $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$ or $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ can be a vertex of the triangle.
Option (a) $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$(c) $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$ are correct.
Note: The distance between two points \[({{x}_{1}},{{y}_{1}})\]and \[({{x}_{2}},{{y}_{2}})\] is given as \[d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\] and not \[d=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}+{{({{y}_{1}}+{{y}_{2}})}^{2}}}\]. It is a very common mistake made by students.
In the case of an equilateral triangle, median, altitude, and perpendicular bisector are the same. Hence, centroid, circumcentre, and orthocentre coincide.
In the case of an equilateral triangle, we know that centroid, orthocentre, and circumcentre coincide.
We also know that the circumcentre is equidistant from the vertices.
So , in the case of an equilateral triangle, the centroid is equidistant from the vertices.
Now, the given centroid is $G\left( 1,1 \right)$and one vertex is $A\left( 1,2 \right)$.

We, know the distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given as;
$\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}$
So, $AG=\sqrt{{{\left( 1-1 \right)}^{2}}+{{\left( 2-1 \right)}^{2}}}=1$
So, $A{{G}^{2}}=1$
Now, since $G$ is the centroid as well as the circumcentre, the other two vertices should lie on a circle with $G\left( 1,1 \right)$as the centre and $AG=1$ as the radius.
Now, we know that the equation of a circle with center at $\left( a,b \right)$ and radius$=r$ is given as
${{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}$
So, the equation of circumcircle becomes
${{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=1..........\left( i \right)$
So, the other two vertices should lie on this circle .
Now , we will check the options .
Option (a) :$\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$
We will substitute $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ in equation $\left( i \right)$.
On substituting $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$, we get;
$\begin{align}
& {{\left( \dfrac{2-\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{-\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow \dfrac{4}{4}=1 \\
& \Rightarrow 1=1 \\
& LHS=RHS \\
\end{align}$
So ,$\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ satisfies the equation and hence , can be one of the vertices .
Option (b): $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$
Now , we will substitute $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$.
On substituting $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$ we get,
$\begin{align}
& {{\left( \dfrac{2+3\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{3\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{27}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow \dfrac{28}{4}=1 \\
& \Rightarrow 7=1 \\
\end{align}$
Which is false i.e. $LHS\ne RHS$
So , $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$ does not satisfy the equation and hence cannot be the vertex of the triangle.
Option (c): $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$
Now , we will substitute $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation$\left( i \right)$.
On substituting $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$, we get
\[\begin{align}
& {{\left( \dfrac{2+\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow 1=1 \\
\end{align}\]
Which is true i.e. $LHS=RHS$
Hence , $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$can be a vertex of the triangle.
Therefore, $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$ or $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ can be a vertex of the triangle.
Option (a) $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$(c) $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$ are correct.
Note: The distance between two points \[({{x}_{1}},{{y}_{1}})\]and \[({{x}_{2}},{{y}_{2}})\] is given as \[d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\] and not \[d=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}+{{({{y}_{1}}+{{y}_{2}})}^{2}}}\]. It is a very common mistake made by students.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
