
The dimensional formula of mobility is _______.
\[\begin{align}
& \text{A}\text{.}{{M}^{-1}}{{L}^{1}}{{T}^{2}}{{A}^{1}} \\
& \text{B}\text{.}{{M}^{1}}{{L}^{0}}{{T}^{-2}}{{A}^{-1}} \\
& \text{C}\text{.}{{M}^{1}}{{L}^{-1}}{{T}^{-2}}{{A}^{-1}} \\
& \text{D}\text{.}{{M}^{-1}}{{L}^{0}}{{T}^{2}}{{A}^{1}} \\
\end{align}\]
Answer
534.3k+ views
Hint: Mobility is defined as the drift velocity of the particle per unit electric field present. So, the dimensional formula of mobility will be the dimensional formula of drift velocity divided by the dimensional formula of electric field. We know that the dimensional formula of a physical quantity is the expression of a physical quantity in terms of fundamental physical quantities.
Formula used:
\[\mu =\dfrac{{{v}_{d}}}{E}\]
Complete step by step answer:
Dimensional formula is the expression of a physical quantity in terms of fundamental physical quantities. Mass (M), Length (L), Time (T), Current (A) and temperature (K) are the fundamental quantities.
Mobility ($\mu$) is defined as the drift velocity ($v_d$) of the particle per unit electric field (E) present.
\[\mu =\dfrac{{{v}_{d}}}{E}\]
Clearly, we can see that the drift velocity is a type of velocity and it can have the same dimensional formula as that of velocity. So, the dimensional formula of drift velocity will be,
\[\left[ {{v}_{d}} \right]={{M}^{0}}{{L}^{1}}{{T}^{-1}}\]
Electric field at a point can be stated as the force per unit charge experienced by an infinitesimal positive test charge present at that point. That means, the dimensional formula of electric field will be,
\[\left[ E \right]=\dfrac{\left[ F \right]}{\left[ q \right]}=\dfrac{ML{{T}^{-2}}}{AT}={{M}^{1}}{{L}^{1}}{{T}^{-3}}{{A}^{-1}}\]
The dimensional formula of mobility is the dimensional formula of drift velocity divided by the dimensional formula of electric field. So,
\[\left[ \mu \right]=\dfrac{\left[ {{v}_{d}} \right]}{\left[ E \right]}=\dfrac{{{M}^{0}}{{L}^{1}}{{T}^{-1}}}{{{M}^{1}}{{L}^{1}}{{T}^{-3}}{{A}^{-1}}}={{M}^{-1}}{{L}^{0}}{{T}^{2}}{{A}^{1}}\]
Thus, we can see that option D is the correct answer.
Note: Students usually memorize the dimensional formulas. But, in my opinion, it is not a right practice. It is good to understand the physical quantities and relate them. Thus, these big formulas will become easier to us. It is the best and shortest way in practice. Dimensional analysis will sometimes help us to eliminate some wrong options. So, it is a good thing to understand this.
Formula used:
\[\mu =\dfrac{{{v}_{d}}}{E}\]
Complete step by step answer:
Dimensional formula is the expression of a physical quantity in terms of fundamental physical quantities. Mass (M), Length (L), Time (T), Current (A) and temperature (K) are the fundamental quantities.
Mobility ($\mu$) is defined as the drift velocity ($v_d$) of the particle per unit electric field (E) present.
\[\mu =\dfrac{{{v}_{d}}}{E}\]
Clearly, we can see that the drift velocity is a type of velocity and it can have the same dimensional formula as that of velocity. So, the dimensional formula of drift velocity will be,
\[\left[ {{v}_{d}} \right]={{M}^{0}}{{L}^{1}}{{T}^{-1}}\]
Electric field at a point can be stated as the force per unit charge experienced by an infinitesimal positive test charge present at that point. That means, the dimensional formula of electric field will be,
\[\left[ E \right]=\dfrac{\left[ F \right]}{\left[ q \right]}=\dfrac{ML{{T}^{-2}}}{AT}={{M}^{1}}{{L}^{1}}{{T}^{-3}}{{A}^{-1}}\]
The dimensional formula of mobility is the dimensional formula of drift velocity divided by the dimensional formula of electric field. So,
\[\left[ \mu \right]=\dfrac{\left[ {{v}_{d}} \right]}{\left[ E \right]}=\dfrac{{{M}^{0}}{{L}^{1}}{{T}^{-1}}}{{{M}^{1}}{{L}^{1}}{{T}^{-3}}{{A}^{-1}}}={{M}^{-1}}{{L}^{0}}{{T}^{2}}{{A}^{1}}\]
Thus, we can see that option D is the correct answer.
Note: Students usually memorize the dimensional formulas. But, in my opinion, it is not a right practice. It is good to understand the physical quantities and relate them. Thus, these big formulas will become easier to us. It is the best and shortest way in practice. Dimensional analysis will sometimes help us to eliminate some wrong options. So, it is a good thing to understand this.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
