
The dimensions of self-inductance are:
A) $[ML{T^{ - 2}}{A^{ - 2}}]$
B) $[M{L^2}{T^{ - 1}}{A^{ - 2}}]$
C) $[M{L^2}{T^{ - 2}}{A^{ - 2}}]$
D) $[M{L^2}{T^{ - 1}}{A^{ - 1}}]$
Answer
169.2k+ views
Hint: We must know the definition and formula of self-inductance. Substitute the formula with the SI units of all the values and then convert the SI units to fundamental units to get the dimensional formula.
Complete step by step solution:
When the current in a circuit changes, a magnetic field is generated around the circuit. This magnetic field due to a current carrying circuit induces emf in the circuit. This induced emf in the circuit due to the change in current in the same circuit is known as self-induction. This emf is known as self-induced emf.
Mathematically, self-induction is equal to the total magnetic flux divided by the current in the circuit.
This equation is given by
$L = \dfrac{\phi }{i}$
where $L$ is self-inductance
$\phi $ is magnetic flux
$i$ is the current in the circuit
Using this formula now we find the dimensional formula for self-inductance.
Before finding the dimensional formula for self-inductance, understand the meaning of dimensional formula.
The dimensional formula gives the relation between the SI units’ also known as derived units and fundamental units.
The fundamental units mentioned here in the options are given as mass $[M]$ , length $[L]$, time $[T]$ and electric current $[A]$ .
So now we first substitute the formula of self-inductance with the SI units and then convert the SI units to fundamental units.
$L = \dfrac{\phi }{i}$
Substituting magnetic flux $\phi = BA$ where $B$ is magnetic field and $A$ is the area
$ \Rightarrow L = \dfrac{{BA}}{i}$
The SI units of $B$ is $Tesla$ , $A$ is ${m^2}$ and $i$ is $Ampere(A)$
${m^2}$ and $Ampere$ are fundamental units so we don’t need to convert them.
We only need to convert $Tesla$ to fundamental units.
$Tesla$ is the SI unit of magnetic field where magnetic field is given by the equation
$F = Bvq$ where $F$ is force (SI unit $Newton$ )
$q$ is charge (SI unit $Coulomb$ )
$v$ is velocity (SI unit $m{s^{ - 1}}$ )
$\therefore B = \dfrac{F}{{vq}}$
$ \Rightarrow B = \dfrac{N}{{Cm{s^{ - 1}}}}$
Here, substituting $C{s^{ - 1}} = Ampere$ as $q = \dfrac{I}{t}$
$ \Rightarrow B = \dfrac{N}{{Am}}$
Substituting $N = kgm{s^{ - 2}}$ as $F = ma$
$ \Rightarrow B = \dfrac{{kg{s^{ - 2}}}}{A}$
Substituting these units of $B$ in $L = \dfrac{{BA}}{i}$
$\therefore L = \dfrac{{kg{m^2}{s^{ - 2}}}}{{{A^2}}}$
$ \Rightarrow L = [{M^1}{L^2}{T^{ - 2}}{A^{ - 2}}]$
Where $M$ defines mass $L$ defines length $T$ defines time and $A$ defines electric current.
$\therefore $ Option $(C), [M{L^2}{T^{ - 2}}{A^{ - 2}}]$ is the right option for the dimensional formula of self-inductance.
Note: We must know which units are fundamental units and which are SI units. Knowing the formulae and relations between the units is important to get the right answer.
Inductance is of two types: self-inductance and mutual-inductance. In self-inductance the change in current and induced emf is in the same circuit whereas in mutual inductance the change in current is in one circuit and the emf is induced in the neighbouring circuit.
Complete step by step solution:
When the current in a circuit changes, a magnetic field is generated around the circuit. This magnetic field due to a current carrying circuit induces emf in the circuit. This induced emf in the circuit due to the change in current in the same circuit is known as self-induction. This emf is known as self-induced emf.
Mathematically, self-induction is equal to the total magnetic flux divided by the current in the circuit.
This equation is given by
$L = \dfrac{\phi }{i}$
where $L$ is self-inductance
$\phi $ is magnetic flux
$i$ is the current in the circuit
Using this formula now we find the dimensional formula for self-inductance.
Before finding the dimensional formula for self-inductance, understand the meaning of dimensional formula.
The dimensional formula gives the relation between the SI units’ also known as derived units and fundamental units.
The fundamental units mentioned here in the options are given as mass $[M]$ , length $[L]$, time $[T]$ and electric current $[A]$ .
So now we first substitute the formula of self-inductance with the SI units and then convert the SI units to fundamental units.
$L = \dfrac{\phi }{i}$
Substituting magnetic flux $\phi = BA$ where $B$ is magnetic field and $A$ is the area
$ \Rightarrow L = \dfrac{{BA}}{i}$
The SI units of $B$ is $Tesla$ , $A$ is ${m^2}$ and $i$ is $Ampere(A)$
${m^2}$ and $Ampere$ are fundamental units so we don’t need to convert them.
We only need to convert $Tesla$ to fundamental units.
$Tesla$ is the SI unit of magnetic field where magnetic field is given by the equation
$F = Bvq$ where $F$ is force (SI unit $Newton$ )
$q$ is charge (SI unit $Coulomb$ )
$v$ is velocity (SI unit $m{s^{ - 1}}$ )
$\therefore B = \dfrac{F}{{vq}}$
$ \Rightarrow B = \dfrac{N}{{Cm{s^{ - 1}}}}$
Here, substituting $C{s^{ - 1}} = Ampere$ as $q = \dfrac{I}{t}$
$ \Rightarrow B = \dfrac{N}{{Am}}$
Substituting $N = kgm{s^{ - 2}}$ as $F = ma$
$ \Rightarrow B = \dfrac{{kg{s^{ - 2}}}}{A}$
Substituting these units of $B$ in $L = \dfrac{{BA}}{i}$
$\therefore L = \dfrac{{kg{m^2}{s^{ - 2}}}}{{{A^2}}}$
$ \Rightarrow L = [{M^1}{L^2}{T^{ - 2}}{A^{ - 2}}]$
Where $M$ defines mass $L$ defines length $T$ defines time and $A$ defines electric current.
$\therefore $ Option $(C), [M{L^2}{T^{ - 2}}{A^{ - 2}}]$ is the right option for the dimensional formula of self-inductance.
Note: We must know which units are fundamental units and which are SI units. Knowing the formulae and relations between the units is important to get the right answer.
Inductance is of two types: self-inductance and mutual-inductance. In self-inductance the change in current and induced emf is in the same circuit whereas in mutual inductance the change in current is in one circuit and the emf is induced in the neighbouring circuit.
Recently Updated Pages
Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Wheatstone Bridge for JEE Main Physics 2025
