
The equation of a line through the intersection of lines $x=0$ and $y=0$ and through the
point $\left( 2,~2 \right)$ is
(a) $y=x-1$
(a) $y=-x$
(b) $y=x$
(c) $y=-x+2$
Answer
561.9k+ views
Hint: Substitute the given points into the standard equation of line formula.
The equations of the given lines are $x=0$ and $y=0$. The coordinates of the point of
intersections are already available. This means that the point of intersection of these lines would be
$\left( 0,0 \right)$. Another point through which the required line passes through is given in the
question as $\left( 2,2 \right)$.
Now, we know that the equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and
\[({{x}_{2}},{{y}_{2}})\] is given by,
\[\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\
\end{align}\]
So, the equation of the required line passing through $\left( 0,0 \right)$ and $\left( 2,2 \right)$ can
be obtained as,
$y-0=\dfrac{2-0}{2-0}\left( x-0 \right)$
Therefore, the equation of the required line is $y=x$.
Hence, we get option (c) as the correct answer.
Note: The equations $x=0$ and $y=0$ indicate that the required line passes through the origin. So,
the formula to find the equation of the line passing through a point $\left( {{x}_{1}},{{y}_{1}} \right)$
can be obtained as $y=mx$, where $m=\dfrac{{{y}_{1}}}{{{x}_{1}}}$ is the slope.
The equations of the given lines are $x=0$ and $y=0$. The coordinates of the point of
intersections are already available. This means that the point of intersection of these lines would be
$\left( 0,0 \right)$. Another point through which the required line passes through is given in the
question as $\left( 2,2 \right)$.
Now, we know that the equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and
\[({{x}_{2}},{{y}_{2}})\] is given by,
\[\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\
\end{align}\]
So, the equation of the required line passing through $\left( 0,0 \right)$ and $\left( 2,2 \right)$ can
be obtained as,
$y-0=\dfrac{2-0}{2-0}\left( x-0 \right)$
Therefore, the equation of the required line is $y=x$.
Hence, we get option (c) as the correct answer.
Note: The equations $x=0$ and $y=0$ indicate that the required line passes through the origin. So,
the formula to find the equation of the line passing through a point $\left( {{x}_{1}},{{y}_{1}} \right)$
can be obtained as $y=mx$, where $m=\dfrac{{{y}_{1}}}{{{x}_{1}}}$ is the slope.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
