
The focal distance of a point on the parabola is ${y^2} = 8x{\text{ is 4}}$; Find the coordinates of the point?
Answer
555.3k+ views
Hint – First of all, read the question carefully and write the things given in the question i.e. focal distance of the parabola is $4$ i.e. ${\text{D = 4}}$ which is the distance between the focus and that particular point on the parabola and let the given point and coordinates be ${\text{P}}\left( {x,y} \right)$. The equation of parabola i.e. ${y^2} = 8x$. Now, this will give us a clear picture to understand the question. Thus we will get our desired answer.
“Complete step-by-step answer:”
Now, we will find the coordinates of that particular point. We will use the standard parabola equation i.e. ${y^2} = 4ax$ to solve this given problem.
So, compare the given equation ${y^2} = 8x$ with the standard equation of parabola i.e. ${y^2} = 4ax$, then we will find that ${\text{a = 2}}$ by comparing $8x{\text{ and }}4ax$.
As we know that the standard focus of the parabola is $\left( {a,0} \right)$. Hence, the focus ${\text{F}}$ of the given parabola is $\left( {2,0} \right)$.
According to the question ${\text{D = 4}}$ and we assumed the point on the locus as ${\text{P}}\left( {x,y} \right)$.
By using the distance the formula on ${\text{F}}\left( {2,0} \right){\text{ and P}}\left( {x,y} \right)$ we will get ,
${\text{4 = }}\sqrt {{{\left( {x - 2} \right)}^2} + {{\left( {y - 0} \right)}^2}} $
By squaring on both sides,
$16 = {\left( {x - 2} \right)^2} + {\left( y \right)^2}$
Now, put the value of ${y^2}$ as $8x$ which is given in question and expand the equation ${\left( {x - 2} \right)^2}$
$16 = {x^2} + 4 - 4x + 8x$
${x^2} + 4x - 12 = 0$
By using factorisation method,
${x^2} + 6x - 2x - 12 = 0$
$x\left( {x + 6} \right) - 2\left( {x + 6} \right) = 0$
$\left( {x - 2} \right)\left( {x + 6} \right) = 0$
This implies that $x$ can be $2, - 6$ but according to the equation ${y^2} = 4ax$, $x$ cannot be negative.
So, we left with only $x = 2$
Now, by putting the value of $x$ in ${y^2} = 8x$
We will get,
${y^2} = 8 \times 2$
${y^2} = 16$
Apply square root both sides, we will get
$y = 4, - 4$
So, the coordinates are $\left( {2,4} \right){\text{ and }}\left( {2, - 4} \right)$
Note – In this type of questions, firstly we should compare the given equation with the standard parabolic equations which are:
$
\left( 1 \right){\text{ }}{y^2}{\text{ = 4}}ax{\text{ }} \\
\left( 2 \right){\text{ }}{{\text{y}}^2} = - 4ax \\
\left( 3 \right){\text{ }}{x^2} = 4ay \\
\left( 4 \right){\text{ }}{x^2} = - 4ay \\
$
Then simply putting those values in the equation we get our required answer.
Do note that the distance formula between the two points i.e. $\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)$ is:
$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} = {\text{ Distance between them }}$ .
“Complete step-by-step answer:”
Now, we will find the coordinates of that particular point. We will use the standard parabola equation i.e. ${y^2} = 4ax$ to solve this given problem.
So, compare the given equation ${y^2} = 8x$ with the standard equation of parabola i.e. ${y^2} = 4ax$, then we will find that ${\text{a = 2}}$ by comparing $8x{\text{ and }}4ax$.
As we know that the standard focus of the parabola is $\left( {a,0} \right)$. Hence, the focus ${\text{F}}$ of the given parabola is $\left( {2,0} \right)$.
According to the question ${\text{D = 4}}$ and we assumed the point on the locus as ${\text{P}}\left( {x,y} \right)$.
By using the distance the formula on ${\text{F}}\left( {2,0} \right){\text{ and P}}\left( {x,y} \right)$ we will get ,
${\text{4 = }}\sqrt {{{\left( {x - 2} \right)}^2} + {{\left( {y - 0} \right)}^2}} $
By squaring on both sides,
$16 = {\left( {x - 2} \right)^2} + {\left( y \right)^2}$
Now, put the value of ${y^2}$ as $8x$ which is given in question and expand the equation ${\left( {x - 2} \right)^2}$
$16 = {x^2} + 4 - 4x + 8x$
${x^2} + 4x - 12 = 0$
By using factorisation method,
${x^2} + 6x - 2x - 12 = 0$
$x\left( {x + 6} \right) - 2\left( {x + 6} \right) = 0$
$\left( {x - 2} \right)\left( {x + 6} \right) = 0$
This implies that $x$ can be $2, - 6$ but according to the equation ${y^2} = 4ax$, $x$ cannot be negative.
So, we left with only $x = 2$
Now, by putting the value of $x$ in ${y^2} = 8x$
We will get,
${y^2} = 8 \times 2$
${y^2} = 16$
Apply square root both sides, we will get
$y = 4, - 4$
So, the coordinates are $\left( {2,4} \right){\text{ and }}\left( {2, - 4} \right)$
Note – In this type of questions, firstly we should compare the given equation with the standard parabolic equations which are:
$
\left( 1 \right){\text{ }}{y^2}{\text{ = 4}}ax{\text{ }} \\
\left( 2 \right){\text{ }}{{\text{y}}^2} = - 4ax \\
\left( 3 \right){\text{ }}{x^2} = 4ay \\
\left( 4 \right){\text{ }}{x^2} = - 4ay \\
$
Then simply putting those values in the equation we get our required answer.
Do note that the distance formula between the two points i.e. $\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)$ is:
$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} = {\text{ Distance between them }}$ .
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
