
The points \[(11,9),{\text{ }}(2,1)\] and \[(2, - 1)\] are the midpoints of the sides of the triangle.
Then the centroid is.
\[
(A){\text{ }}( - 5, - 3){\text{ }}(B){\text{ }}(5, - 3) \\
(C){\text{ }}(3,5){\text{ }}(D){\text{ }}(5,3) \\
\]
Answer
560.1k+ views
Hint:- Coordinates of midpoint of a line is \[\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]. If coordinates of
the end points of the line are \[({x_1},{y_1})\] and \[({x_2},{y_2})\].
We are given with the coordinates of midpoints of the sides of the triangle.
Let the coordinates of the vertices of the triangle be,
\[ \Rightarrow \]Vertices of the triangle are \[(a,b),{\text{ }}(c,d)\] and \[(e,f)\].
So, with the property of mid-point of the two given points.
We can write coordinates of mid-points of the sides of the triangle as,
\[ \Rightarrow \]Midpoint of the sides will be \[\left( {\dfrac{{a + c}}{2},\dfrac{{b + d}}{2}} \right),{\text{ }}\left( {\dfrac{{c + e}}{2},\dfrac{{d + f}}{2}} \right)\]and \[\left( {\dfrac{{a + e}}{2},\dfrac{{b + f}}{2}} \right).\]
As, we know that coordinates of centroid of the triangle are,
\[ \Rightarrow \]Centroid of the triangle is \[\left( {\dfrac{{a + c + e}}{3},\dfrac{{b + d + f}}{3}} \right)\]
And it can be easily seen that coordinates of the centroid of the triangle,
Can be easily obtained by adding the coordinates of the mid-points of its sides
and then dividing that by 3.
So, coordinates of centroid can be written as,
\[ \Rightarrow \]Centroid \[ \equiv \left( {\dfrac{{\left( {\dfrac{{a + c}}{2}} \right) + \left( {\dfrac{{c + e}}{2}} \right) + \left( {\dfrac{{a + e}}{2}} \right)}}{3},\dfrac{{\left( {\dfrac{{b + d}}{2}} \right) + \left( {\dfrac{{d + f}}{2}} \right) + \left( {\dfrac{{b + f}}{2}} \right)}}{3}} \right)\]
So, putting the values of a, b and c in the above point denoted as centroid. We get,
\[ \Rightarrow \]Centroid \[ \equiv \left( {\dfrac{{11 + 2 + 2}}{3},\dfrac{{9 + 1 - 1}}{3}} \right) \equiv \left( {5,3} \right)\]
\[ \Rightarrow \]Hence, the coordinates of the centroid of the triangle will be \[\left( {5,3} \right)\]
\[ \Rightarrow \]Hence, the correct option will be D.
Note:- Whenever we came up with this type of problem then first, we had to assume the
coordinates of vertices of triangle and then find mid-pints in terms of coordinates of
vertices. After that put coordinates of midpoints in terms of vertices of triangle in the formula
centroid triangle.
the end points of the line are \[({x_1},{y_1})\] and \[({x_2},{y_2})\].
We are given with the coordinates of midpoints of the sides of the triangle.
Let the coordinates of the vertices of the triangle be,
\[ \Rightarrow \]Vertices of the triangle are \[(a,b),{\text{ }}(c,d)\] and \[(e,f)\].
So, with the property of mid-point of the two given points.
We can write coordinates of mid-points of the sides of the triangle as,
\[ \Rightarrow \]Midpoint of the sides will be \[\left( {\dfrac{{a + c}}{2},\dfrac{{b + d}}{2}} \right),{\text{ }}\left( {\dfrac{{c + e}}{2},\dfrac{{d + f}}{2}} \right)\]and \[\left( {\dfrac{{a + e}}{2},\dfrac{{b + f}}{2}} \right).\]
As, we know that coordinates of centroid of the triangle are,
\[ \Rightarrow \]Centroid of the triangle is \[\left( {\dfrac{{a + c + e}}{3},\dfrac{{b + d + f}}{3}} \right)\]
And it can be easily seen that coordinates of the centroid of the triangle,
Can be easily obtained by adding the coordinates of the mid-points of its sides
and then dividing that by 3.
So, coordinates of centroid can be written as,
\[ \Rightarrow \]Centroid \[ \equiv \left( {\dfrac{{\left( {\dfrac{{a + c}}{2}} \right) + \left( {\dfrac{{c + e}}{2}} \right) + \left( {\dfrac{{a + e}}{2}} \right)}}{3},\dfrac{{\left( {\dfrac{{b + d}}{2}} \right) + \left( {\dfrac{{d + f}}{2}} \right) + \left( {\dfrac{{b + f}}{2}} \right)}}{3}} \right)\]
So, putting the values of a, b and c in the above point denoted as centroid. We get,
\[ \Rightarrow \]Centroid \[ \equiv \left( {\dfrac{{11 + 2 + 2}}{3},\dfrac{{9 + 1 - 1}}{3}} \right) \equiv \left( {5,3} \right)\]
\[ \Rightarrow \]Hence, the coordinates of the centroid of the triangle will be \[\left( {5,3} \right)\]
\[ \Rightarrow \]Hence, the correct option will be D.
Note:- Whenever we came up with this type of problem then first, we had to assume the
coordinates of vertices of triangle and then find mid-pints in terms of coordinates of
vertices. After that put coordinates of midpoints in terms of vertices of triangle in the formula
centroid triangle.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
