
The relationship between \[{{K}_{p}}\] and \[{{K}_{c}}\] is correctly shown as:
This question has multiple correct options
(A) \[{{K}_{c}}={{K}_{p}}{{(RT)}^{\Delta n}}\]
(B) \[{{K}_{p}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
(C) \[{{K}_{c}}={{K}_{p}}{{(RT)}^{\Delta n}}\]
(D) \[{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
Answer
174.3k+ views
Hint: Here we know that \[{{K}_{c}}\] and \[{{K}_{p}}\] are equilibrium constants of gaseous mixture. Here \[{{K}_{c}}\] is for molar concentration and \[{{K}_{p}}\] is for partial pressure of the gases inside a closed system.
Step by step solution:
\[{{K}_{c}}\]and \[{{K}_{p}}\] are the equilibrium constants of gaseous mixtures. Where
\[{{K}_{c}}\] is defined by molar concentration
\[{{K}_{p}}\] is defined by partial pressure.
Let’s consider a reversible reaction:
\[aA+bB\underset{{}}{\leftrightarrows}cC+dD\]
Now equilibrium constant for the reaction expressed in the terms of concentration:
\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]
If the equilibrium reaction involves gaseous species. The equilibrium constant in terms of partial pressures is:
\[{{K}_{p}}=\dfrac{{{[pC]}^{c}}{{[pD]}^{d}}}{{{[pA]}^{a}}{{[pB]}^{b}}}\]
And the ideal gas equation:
\[pV=nRT\]
By rearrangement:
\[p=\dfrac{nRT}{V}=CRT\]
So, from the ideal gas equation:
\[pA\text{ }=\text{ }\left[ A \right]\text{ }RT\],\[\text{ }pB\text{ }=\text{ }\left[ B \right]\text{ }RT\],\[\text{ }pC\text{ }=\text{ }\left[ C \right]\text{ }RT\] and \[\text{ }pD\text{ }=\text{ }\left[ D \right]\text{ }RT\]
Now we will put all these values of partial pressure in the equation of \[{{K}_{p}}\]:
\[{{K}_{p}}=\dfrac{{{(\left[ C \right]\text{ }RT)}^{c}}{{(\left[ D \right]\text{ }RT)}^{d}}}{{{(\left[ A \right]\text{ }RT)}^{a}}{{(\left[ B \right]\text{ }RT)}^{b}}}\]
By rearranging the equation and putting\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]:
\[{{K}_{p}}=\dfrac{{{\left[ C \right]}^{c}}{{\text{(}RT)}^{c}}{{\left[ D \right]}^{d}}{{(RT)}^{d}}}{{{\left[ A \right]}^{a}}{{\text{(}RT)}^{a}}{{\left[ B \right]}^{b}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}\dfrac{{{\text{(}RT)}^{c}}{{(RT)}^{d}}}{{{\text{(}RT)}^{a}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{(c+d)-(a+b)}}\]’
Let \[\Delta n=(c+d)-(a+b)\]
Then,
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
So, from the above derivation we can say that the correct relationship between \[{{K}_{p}}\] and \[{{K}_{c}}\]: \[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
And \[{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
Then the correct answer is option “D”.
Note: The equilibrium constants do not include the concentrations of single components such as liquids and solid, and they do not have any units. These constants are only for ideal gases.
Step by step solution:
\[{{K}_{c}}\]and \[{{K}_{p}}\] are the equilibrium constants of gaseous mixtures. Where
\[{{K}_{c}}\] is defined by molar concentration
\[{{K}_{p}}\] is defined by partial pressure.
Let’s consider a reversible reaction:
\[aA+bB\underset{{}}{\leftrightarrows}cC+dD\]
Now equilibrium constant for the reaction expressed in the terms of concentration:
\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]
If the equilibrium reaction involves gaseous species. The equilibrium constant in terms of partial pressures is:
\[{{K}_{p}}=\dfrac{{{[pC]}^{c}}{{[pD]}^{d}}}{{{[pA]}^{a}}{{[pB]}^{b}}}\]
And the ideal gas equation:
\[pV=nRT\]
By rearrangement:
\[p=\dfrac{nRT}{V}=CRT\]
So, from the ideal gas equation:
\[pA\text{ }=\text{ }\left[ A \right]\text{ }RT\],\[\text{ }pB\text{ }=\text{ }\left[ B \right]\text{ }RT\],\[\text{ }pC\text{ }=\text{ }\left[ C \right]\text{ }RT\] and \[\text{ }pD\text{ }=\text{ }\left[ D \right]\text{ }RT\]
Now we will put all these values of partial pressure in the equation of \[{{K}_{p}}\]:
\[{{K}_{p}}=\dfrac{{{(\left[ C \right]\text{ }RT)}^{c}}{{(\left[ D \right]\text{ }RT)}^{d}}}{{{(\left[ A \right]\text{ }RT)}^{a}}{{(\left[ B \right]\text{ }RT)}^{b}}}\]
By rearranging the equation and putting\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]:
\[{{K}_{p}}=\dfrac{{{\left[ C \right]}^{c}}{{\text{(}RT)}^{c}}{{\left[ D \right]}^{d}}{{(RT)}^{d}}}{{{\left[ A \right]}^{a}}{{\text{(}RT)}^{a}}{{\left[ B \right]}^{b}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}\dfrac{{{\text{(}RT)}^{c}}{{(RT)}^{d}}}{{{\text{(}RT)}^{a}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{(c+d)-(a+b)}}\]’
Let \[\Delta n=(c+d)-(a+b)\]
Then,
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
So, from the above derivation we can say that the correct relationship between \[{{K}_{p}}\] and \[{{K}_{c}}\]: \[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
And \[{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
Then the correct answer is option “D”.
Note: The equilibrium constants do not include the concentrations of single components such as liquids and solid, and they do not have any units. These constants are only for ideal gases.
Recently Updated Pages
JEE Main Physics Mock Test 2025

JEE Main Maths Mock Test 2025: FREE Online Mock Test Series

JEE Main Chemistry Mock Test 2025

JEE Main Hydrocarbons Mock Test 2025-26: Free Practice Online

JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Mock Test: Organic Compounds Containing Halogens

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

What is Hybridisation in Chemistry?

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Chemistry Chapter 1 Some Basic Concepts of Chemistry in Hindi - 2025-26

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electron Gain Enthalpy and Electron Affinity for JEE

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction - 2025-26

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
